
Canadian Journal of Pure and Applied Sciences
Vol. 9, No. 3, pp. 3629-3634, October 2015
Online ISSN: 1920-3853; Print ISSN: 1715-9997
Available online at www.cjpas.net

RSPS: MODELING AND VERIFICATION OF A REAL-TIME SECURITY

PROTECTION SERVICE USING MODEL CHECKING

*Alireza Souri1, Solmaz Abdollahizad2, Majid Samad Zamini2 and Adalat Safarkhanlou1

1 Department of Computer Engineering, Hadishahr Branch, Islamic Azad University, Hadishahr, Iran
2 Department of Computer Engineering, Sardroud Branch, Islamic Azad University, Sardroud, Iran

ABSTRACT

In this paper a real-time security protection model for scanning the security files is presented. In this model, a workflow
mechanism is presented for real-time scanning Dynamic Link Library files. A specification relation between the
proposed model and the Kripke structure is presented that enables the verification of the system specifications. By
presenting the appropriate formal semantics, we discuss that how labeling functions permits navigating information and
specifications of the security system. We illustrated expected properties of the system which can be verified and
specified by using temporal logic. So, we defined satisfaction relations for verifying the system specifications. We also
described how some of expected properties of the system are verified. Finally, we implemented some properties of
proposed model in NuSMV model checker. The verification results show that our proposed real-time security protection
model is reachable, deadlock free and fair.

Keywords: Real-time security protection service, dynamic link library, model checking, NuSMV.

INTRODUCTION
When an application or some executable files access to a
dynamic link library (DLL) file without specifying an
exactly path to find it, the windows operation system
searches the needed DLL file in a set of predetermined
paths. If there is a destructive file of homonymous whit
this DLL file in one of the predetermined paths, the
application runs destructive file undesirably. So,
correctness of the scanning operations in real-time
protection service is very important. For increasing
performance of real-time protection service, all files are
scanned for viruses or unwanted programs, irrespective of
their content and their file extension. These DLL files
may be called by CPU in first fetch or middle fetch of the
paths. As a destructive file of homonymous whit these
DLL files may be entered in fetching of paths before
running main file of application and the virus can enable
in the system. So, the real-time protection service should
scan files before opening, reading and executing and after
writing that this procedure cause antivirus prevents to
influx of each malware and infected file to windows the
system directory.

Currently, antivirus systems (Szor, 2005) have an
essential situation in software development. Every
computer needs to a security software for protecting and
maintaining its data and applications. Now days, several
attacks (Wang et al., 2011) are happened to critical

systems, bank servers and military systems via Viruses
and Malwares. Information maintenance and prevention
from unauthorized data access is main reasons for using
antimalware against attacks and destroying data which
has been occurred by invasive malware (Zhang et al.,
2010) widely and suddenly. Du To some specific
problems, verifying the security applications such as the
antivirus systems are very important and essential in
Security Discussion (Schneider, 2000) of computer
systems. Of course, computer viruses (Singh and
Lakhotia, 2002), Spywares (Filiol, 2010), Trojans, Worms
(Sellke et al., 2008) and other new malwares debut every
day.

In this paper, we present a model for a Real-time Security
Protection Service (RSPS) which has all of important
properties of antivirus applications and these properties
are important for verification (Zhiqiao et al., 2012). The
proposed model has focused on maintaining secure state
of the system. We convert the proposed model to a Kripke
structure (Edmund et al., 1999) by using formal
verification (Schlipf et al., 1997).

Formal methods, supporting tools and theory can help to
the analysis, design and verification of the security-related
and internet security protocols used over open networks
and distributed systems. The most commonly followed
techniques for the application of formal methods for the
ex-post analysis and verification of internet security and

*Corresponding author e-mail: alirezasouri.research@gmail.com

Canadian Journal of Pure and Applied Sciences 3630

antivirus systems as the analysis approach are reviewed
(Gritzalis et al., 1999; Yasinsac and Childs, 2005),
followed by the examination of robustness principles and
application limitations. Formal verification and model
checking techniques can be used for automatically
analyzing antivirus and security systems (Gritzalis et al.,
1999). Antivirus model is used in designing antivirus
software and verification of its functional properties.
Formalization and verifying a security model using
formal verification methods is a new idea in software
development. In following, we show some related works
in this topic.

Morales et al. (2006) presented a formal model of virus
transformation that enables variation traceability using
four antivirus solutions for handheld devices. They tested
proposed formal model of antivirus software under attack
of some viruses. They presented formalized antivirus
model for testing some solutions against virus attacks.

Another study, Andronick et al. (2005) considered a new
approach for verification of a smart card embedded
operating system. They proved a C source program
against supplementary annotations and generated a high-
level formal model of the annotated C program that was
used to verifying certain global security properties. This
paper is focused on modeling smart card security in
embedded source codes. Heitmeyer et al. (2008)
presented verifying a system’s high-level security prop-
erties. Their approach is focused on computer security by
using antivirus systems rather than security properties of
software systems. Safarkhanlou et al. (2015) proposed an
antivirus protection service which has two protection
modes: PC protection and Internet Protection. They
modeled the proposed service using a state transition
diagram. They verified proposed model using NuSMV
model checker. Recently, Souri and Navimipour (2013)
proposed an adapted resource discovery approach to
address multi-attribute queries in grid computing. They
presented a behavioral model for their proposed approach
that separate into data gathering, discovery and control
behaviors. So, they used to Kripke structure for modeling
these behaviors and verify their behavioral models by
using NuSMV model checker.

In the present study first we discuss a security protection
service according to dynamic link library (DLL)
functions. Also, this study presents how states of the
security protection service convert to a state chart model.
By using formal verification techniques, we describe how
the model of the system is verified by using Computation
Tree Logic (CTL) rules. So, we formalize some example
of specification rules the paths. Following this the
proposed model implementation is presented using
NuSMV model checker. Finally, conclusion and future
work are provided.

Real-time Security Protection Service
In this section, we present a real-time protection service
and describe how the model of security protection service
is formulated. Then by using formulated model, we
present a Kripke structure for antivirus model. A Kripke
structure is sufficiently indicative many aspects of the
system behaviors which are important for reasoning about
verifying the systems (Clarke et al., 1999).

One of the important functions in DLL files accessibility
is DLLMain function. This function is an optional method
of entry into a DLL. Also, this function has some methods
for providing access to DLL files. We present one of the
main methods for scanning created paths on real-time
protection service. By using this function, it is calling by
the system when processes and threads are initialized and
terminated. Also, these call use to the LoadLibrary and
FreeLibrary functions that allow executable files access to
its specific .dll file in LoadLibrary and FreeLibrary. The
DllMain takes two parameters for itself: hinstDLL and
dwReason.hinstDLL is the base address of the DLL and
dwReason specifies a flag indicating why the DLL entry-
point function is being called.

dwReason parameter can be set to one of the following
values:
• DLL_PROCESS_ATTACH: this value shows that the

DLL is being loaded into the virtual address of the
current process as a result of a call to LoadLibrary.

• DLL_THREAD_ATTACH: this value shows that the
current process creates a thread. When this
procedure occurs, the system calls the entry-point
function of all DLLs attached to the process. The call
is made in the context of the new thread.

• DLL_THREAD_DETACH: this value shows that a
thread is exiting cleanly. The call is made in the
context of the exiting thread.

• DLL_PROCESS_DETACH: this value shows that the
DLL is being unloaded from the virtual address space
of the calling process as a result of either a process
exit or a call to FreeLibrary.

In the figure 1, we analyze some specifications of the
real-time protection service by using satisfaction relations
of Dllmain function.

Definition 1. A state structure is a 4-tuple St = (Q,I, e, T,
P) where Q is a finite set of states, I is an initial state; e is
finite set of events; T is a transition relation according to
his relation: α(s) β(s) such that two states α(s) and β(s)
create a transition relation between themselves by using
event ei, P is the state-labeling function (Schneider,
2004).

Souri et al. 3631

A DllMain structure is a 4-tuple DM = (F, V, A, Cr)
where F is set of functions, Vis set of values of dwReason
parameter, A is set of actions, Cr is calling results of
dwReason. Values of each tuple are as follows:
F= {LoadLibrary, FreeLibrary}
V= {Dll_Process_Attach, Dll_Process_Detach,
Dll_Thread_Attach, Dll_Thread_Detach, New_Loading,
Other_Valuse}
A = {Loaded, Unloaded, Outputs_not_Registered,
New_Thread}
Cr = {Access, Access_Denied}
We obtain label function L for creating satisfaction
relation on DllMain structure

p : (V, f×a) → {True, False} where there is a True

proposition for satisfaction of L(Cr)iff V f = true. We
show Boolean relations as follow:
V×Cr = {(Dll_Process_Attach, Access),
(Dll_Process_Detach, Access), (Dll_Thread_Attach,
Access), (Dll_Thread_Detach, Access), (New_Loading,
Access_Denied), (Other_Valuse, Access)}
f×a = {(LoadLibrary, Loaded), (FreeLibrary, Unloaded),
(FreeLibrary, New_Thread), (LoadLibrary, Unloaded),
(FreeLibrary, Outputs_not_Registered)}

Fig. 1. Calling DLL by using Dllmain function.

Canadian Journal of Pure and Applied Sciences 3632

For using formal verification techniques (Wang et al.,
2012), we need some formal semantics which have been
obtained from expected behaviors of the system and
temporal logic. To achieve formal semantics, we use
Kripke structures (Qianchuan and Krogh, 2001). We
define temporal rules for verifying the specification of the
system by using CTL in satisfaction relation (Clarke et
al., 1999). CTL formulas are divided to two categories:

state formulae and path formulae. By using verification
techniques we can specify that the specifications of model
are satisfied or not. We can see these procedures in the
next section. Now, we analyze some specification of real-
time protection service by using CTL rules:

SPE 1: AG (dwReason.Dll_Process_Attach) →AX
(LoadLibrary.Loaded)
For this formula we have (Dll_Process_Attach, Access) ∈
V×Cr and (LoadLibrary, Loaded) ∈ f×a. So, L(Access)=
{Dll_Process_Attach∈V, Loaded∈A |

Dll_Process_Attach LoadLibrary=True}. Then, after
accessing dwReason to LoadLibrary, a specific dll loaded
into current process. In final L(Access) occurred after
calling Dll_Process_Attach. In this result, the formula
SPE 1 is satisfied.

SPE 2: EF(￢(dwReason.New_Loading) ∧ (dwReason.

Other_Valuse)) →EX (FreeLibrary.
Outputs_not_Registered)

For all of the paths, when dwReasonruns new loading
operations for calling LoadLibrary function, the antivirus
prevent from this loading and accessing to LoadLibrary.
Also, if dwReason don’t call New_Loading and
dwReasoncall Other_Valuse, then dll loaded into current
process after accessing to FreeLibrar. But produced
outputs have not registered in FreeLibrary. We have￢
(New_Loading, Access_Denied) = (Other Valuse,

Fig. 2. Verification of CTL properties by using NuSMV model checker.

Fig. 3. Checking reachability and fairness of proposed model.

Souri et al. 3633

Access) ∈ V×Cr and
(FreeLibrary.Outputs_not_Registered) ∈f×a. Also, we can
show:

When (dwReason.New_Loading) ⊆L(Access_Denied)then ￢
(dwReason.New_Loading)⊆ L(Access) and we know
(dwReason. Other_Valuse) ⊆ L(Access). So, following
relation is True:
￢(dwReason.New_Loading)∧ (dwReason.Other_
Valuse)⊆L(Access).
So, L(Access)= {New_Loading, Other_Valuse∈ V,
Outputs_not_Registered∈A |
￢New_Loading∧Other_Valuse FreeL
ibrary}. In this result, the formula SPE 2is satisfied.

SPE 3: EF(dwReason.Dll_Thread_Attach) →EX
(FreeLibrary.New_Thread)
For this formula, there is a path which when dwReason=
Dll_Thread_Attach then current process is creating a
thread. When this occurs, the system calls the entry
function of all DLLs attached to the process. The call is
made in the context of the new thread. So, we have
(Dll_Thread_Attach, Access) ∈ V×Cr and
(FreeLibrary.New_Thread)∈f×a. We show L(Access) =
{Dll_Thread_Attach∈V, New_Thread∈A |
Dll_Thread_Attach FreeLibrary = True}. In
final, L(Access) occurred after calling Dll_Thread_Attach. In
this result, the formula SPE 3 is satisfied.

SPE 4: EF (dwReason.Dll_Process_Detach) →EX
(FreeLibrary.Unloaded)

For this formula, there is a path that when dwReason =
Dll_Process_Detach then DLL is being unloaded from
calling process as a call to FreeLibrary. So, we have
(Dll_Process_Detach, Access) ∈ V×Cr and
(FreeLibrary.Unloaded)∈f×a. We can see L(Access)=
{Dll_Process_Detach∈V,Unloaded∈A |
Dll_Process_Detach FreeLibrary = True}. In final,

L(Access) occurred after exit calling Dll_Process_Detach. In
this result, the formula SPE 4 is satisfied.
Finally, after analyzing some CTL formulas in security
status service and real-time protection service, we showed
how the expected specifications of the security protection
service verified. In the next section, the procedure of
verifying the proposed models is shown.

Implementation
In this section, the following commands are used in
NuSMV model checker. First, we have to read the SMV
program by name DLL-Protection.smv then flatten the
hierarchy, encode the model variables and build our
model. Figure 2 shows the results of the model checking
of CTL and LTL properties by using NuSMV model

checker. In the implementation, our proposed model
detected successfully some specifications described in the
above section (shown by Green color).

Using check_fsm command, we can check the deadlock
problem in finite state machine of our proposed model as
a performance evaluation. In figure 3, we showed that the
proposed model has not deadlocked (by green line). These
results specify that our proposed model is reachable,
deadlock free and fair in the states and the transitions.

Moreover, table 1 shows the evaluation results to verify
the total number of properties in Antivirus model which
are obtained by NuSMV model checker tool.

CONCLUSION

In this paper, we modeled a security protection service in
DLL functions. We showed that how model of security
protection service has formulated using formal
verification techniques. A specification relation between
the model and the Kripke structure which enables the
conditions for verifying specifications of the system is
presented. By presenting the appropriate formal
semantics, we showed that how labeling functions permits
navigating information and specifications of the security

Table 1. Verification results for proposed model.

Property Result Time (s) Memory (KB) Temporal Language
AG (dwReason-ProcessAttach) -> AX (LoadLibrary-Loaded) Satisfiable 85.332 46,236 CTL
EF ((dwReason-NewLoading) & (dwReason-OtherValuse)) ->EX
(FreeLibrary-OutputsnotRegistered)

Satisfiable

11.778

12,952

CTL

EF (dwReason-DllThreadAttach) -> EX (FreeLibrary-
NewThread)

Satisfiable 26.785 37,792 CTL

EF (dwReason-DllProcessDetach) -> EX (FreeLibrary-Unloaded)
Satisfiable

19.935

17,792

LTL

G(dwReason-DllThreadAttach) -> F ((FreeLibrary-
NewThread)|(FreeLibrary-Unloaded))

Satisfiable

16.597

46,956

LTL

(G(dwReason-ProcessAttach) -> F (LoadLibrary-Loaded)) U
(G(dwReason-NewLoading) -> (FreeLibrary-
OutputsnotRegistered))

Satisfiable

65.332

89,136

LTL

Canadian Journal of Pure and Applied Sciences 3634

protection service. We illustrated expected properties of
the system which can verify and specified by using CTL
and LTL. So, we defined satisfaction relations for
verifying the system specifications. We also described
how some of expected properties of the system are
verified. Also, we could find suitable relations between
the system specifications rules. Finally, we implemented
some properties of proposed model in NuSMV model
checker. In the future work, we will analyze verifications
results on behavioral modeling of the antivirus systems
and find correct relations between formal verifications
and CTL and LTL logics in the security protocols.

REFERENCES

Andronick, J., Chetali, B. and Paulin-Mohring, C. 2005.
Formal Verification of Security Properties of Smart Card
Embedded Source Code. In: Formal Methods. Eds.
Fitzgerald, J., Hayes, I. and Tarlecki, FM. Springer
Berlin Heidelberg. 3582:302-317.

Clarke, EM., Grumberg, O. and Peled, DA. 1999. Model
checking. MIT Press.

Edmund, M., Clarke, J., Grumberg, O. and Peled, DA.
1999. Model checking: MIT Press.

Filiol, E. 2010. Viruses and Malware. In: Handbook of
Information and Communication Security. Eds. P.
Stavroulakis, P. and M. Stamp, M. Springer Berlin
Heidelberg. 747-769.

Gritzalis, S., Spinellis, D. and Georgiadis, P. 1999.
Security protocols over open networks and distributed
systems: formal methods for their analysis, design, and
verification. Computer Communications. 22(8):697-709.
doi: http://dx.doi.org/10.1016/S0140-3664(99)00030-4.

Heitmeyer, CL., Archer, MM., Leonard, EI. and McLean,
JD. 2008. Applying Formal Methods to a Certifiably
Secure Software System. Software Engineering, IEEE
Transactions on. 34(1):82-98. doi:
10.1109/TSE.2007.70772

Morales, J., Clarke, P., Deng, Y. and Golam Kibria, BM.
2006. Testing and evaluating virus detectors for handheld
devices. Journal in Computer Virology. 2(2):135-147.
doi: 10.1007/s11416-006-0024-y

Qianchuan, Z. and Krogh, BH. 2001. Formal verification
of Statecharts using finite-state model checkers. [Paper
presented at the American Control Conference, 2001].
Proceedings of the 2001.

Safarkhanlou, A., Souri, A., Norouzi, M. and Sardroud, S.
EH. 2015. Formalizing and Verification of an Antivirus
Protection Service using Model Checking. Procedia
Computer Science. 57:1324-1331. doi:
http://dx.doi.org/10.1016/j.procs.2015.07.443

Schlipf, T., Buechner, T., Fritz, R., Helms, M. and Koehl,
J. 1997. Formal verification made easy. IBM Journal of
Research and Development. 41(4.5):567-576. doi:
10.1147/rd.414.0567.

Schneider, FB. 2000. Enforceable security policies. ACM
Trans. Inf. Syst. Secur. 3(1):30-50. doi:
10.1145/353323.353382.

Schneider, K. 2004. Verification of Reactive Systems:
Formal Methods and Algorithms: Springer Verlag.

Sellke, SH., Shroff, NB. and Bagchi, S. 2008. Modeling
and Automated Containment of Worms. Dependable and
Secure Computing, IEEE Transactions on. 5(2):71-86.
doi: 10.1109/TDSC.2007.70230.

Singh, PK. and Lakhotia, A. 2002. Analysis and detection
of computer viruses and worms: an annotated
bibliography. SIGPLAN Not. 37(2):29-35. doi:
10.1145/568600.568608.

Souri, A. and Navimipour, NJ. 2013. Behavioral
Modeling and Formal Verification of Resource Discovery
in Grid Computing. Expert Systems with Applications(0).
doi: 10.1016/j.eswa.2013.11.042.

Szor, P. 2005. The Art of Computer Virus Research and
Defense: Addison-Wesley Professional.

Wang, W., Zhang, PT., Tan, Y. and He, XG. 2011.
Animmune local concentration based virus detection
approach. Journal of Zhejiang University Science.
12(6):443-454. doi: 10.1631/jzus.C1000445.

Wang, ZX., Wang, JM., Zhu, XC. and Wen, LJ. 2012.
Verification of workflow nets with transition conditions.
Journal of Zhejiang University Science. 13(7):483-509.
doi: 10.1631/jzus.C1100364.

Yasinsac, A. and Childs, J. 2005. Formal analysis of
modern security protocols. Information Sciences. 171(1–
3):189-211. doi:
http://dx.doi.org/10.1016/j.ins.2004.03.021.

Zhang, XS., Chen, T., Zheng, J. and Li, H. 2010.
Proactive worm propagation modeling and analysis in
unstructured peer-to-peer networks. Journal of Zhejiang
University Science. 11(2):119-129. doi:
10.1631/jzus.C0910488.

Zhiqiao, W., Kwong, CK., Tang, J. and Chan, JWK.
2012. Integrated model for software component selection
with simultaneous consideration of implementation and
verification. Computers and Operations Research.
39(12):3376-3393. doi:
http://dx.doi.org/10.1016/j.cor.2012.04.020.

Received: May 1, 2015; Revised: Aug 18, 2015; Accepted: Sept 2, 2015

