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ABSTRACT 

 

The analysis of travel times with moveout velocities represents one of the most widely used seismic signal processing 

techniques for the exploration and monitoring of oil and gas reservoirs. In travel time analysis for anisotropic elastic 

media with fractures, the knowledge of the conversion point at interfaces with incident longitudinal and reflected 

transversal elastic response impulses taking into account the azimuthal dependence is important for both seismic data 

analysis acquired in multicomponent surveys and the correct interpretation of seismic in reservoirs. Henceforth, this 

work shows how to derive analytical expressions for the longitudinal to transverse response impulse “P-Si” conversion 

points using the ellipsoidal approximation for fractured orthorhombic elastic media under kinematical considerations. 

These expressions can be used for vertical seismic profiles with small polar angles of aperture and azimuthal dependence 

in orthorhombic media when the elastic slowness is used as a main theoretical tool to resolve the Christoffel equation. 

We also explain some of the differences within the ellipsoidal inversion procedure of the elastic stiffnesses C13 and C23.  

 

Keywords: Vertical seismic profiles, ellipsoidal approximation, orthorhombic anisotropy, P-Si conversion points, 

azimuthally dependent elastic media.  
 

 

INTRODUCTION  

 

In seismic oil and gas exploration, one of the most 

important theoretical tools to start with any analysis that 

involving the direct task of finding the elastic velocity 

field to infer lithology properties, the inverse estimation 

of the elastic stiffness tensor field and the fracture 

orientation is the Christoffel equation (Grechka, 2017; 

Musgrave, 1970). The Christoffel equation can be 

resolved to initially give the eigenvalues and eigenvectors 

that represent phase velocities and phase angles for all the 

elastic symmetries (Musgrave, 1970) (the symmetries of 

anisotropic rocks in seismic are a subgroup of the 

symmetries found in the Bravais lattice, namely the 

hexagonal (VTI), the orthorhombic, the monoclinic, and 

the triclinic ones. They are called low symmetry systems 

and with the subsequent estimation and visualization of 

the group velocity elastic field (also called response 

impulses field) and their corresponding angles calculation 

(see a-panel in Fig. 1). Thomsen (1986) serve as the main 

tool for what is called the forward modeling of the Earth’s 

crust in Exploration Geophysics. This procedure finds 

practical applications in VTI media with a vertical axis of 

symmetry (Thomsen, 1986), and also in azimuthally 

dependent (Tsvankin and Grechka, 2011) fracture media 

such as the HTI (Contreras et al., 1999), the orthorhombic 

(Grechka and Tsvankin, 1997) and the monoclinic elastic 

fractured systems (Hao and Stovas, 2014). However, there 

are additional issues on how to apply the elasticity 

formalism derived from the Christoffel equation to 

seismic exploration. 

 

The first factor to consider is the acquisition geometry if 

the acquisition has wider angles of apertures with a 

surface source and geophones arrangement, or on the 

other hand, vertical seismic profiles (VSP) with a surface 

source and downhole geophones. This is a practical issue 

since it takes into consideration the data acquisition and 

processing in geophysical exploration and monitoring 

analysis of oil wells. It can in principle be used sources 

with P waves and additionally use the transversal waves 

generated at the interface when the elastic energy converts 

from one to another elastic mode (P – S1 and P – S2 

conversion points). Additionally, it can be used 

multicomponent seismic records with 3-D sources and 3-

D geophones able to generate and record the transversal 

elastic field (multicomponent seismic). If the whole 

elastic field is included in the source and it is performed 

in multicomponent surveys and in addition to 

petrophysics analysis considering vertical seismic profiles 

and Crosswell geometries, the quantity of information to 

be processed increases considerable and any theoretical 

tool available helps in the task of imaging the subsurface 

with smaller error percentage. 

 

_____________________________________________________________________ 
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Historically, most of the seismic signal anisotropic 

processing analysis done has been based on the Thomsen 

parametrization (Thomsen, 1986) or the derivations from 

it that consider azimuthally dependence of the wave field 

(Tsvankin and Grechka, 2011). Henceforth, the second 

point to consider is theoretical, and addresses which 

variables and approximation will be used to solve the 

Christoffel equation (Grechka, 2017). This depends on the 

first factor since the acquisition of seismic data depends 

on what approximation is used to solve the velocity 

elastic field or the inverse estimation of the elastic 

stiffnesses. 

 

On the other hand, the solution of the Christoffel equation 

in oil and gas shale reservoirs, despite the enormous 

advance during all these years and which started with the 

use of the Thomsen analytical approximation for VTI 

systems (Thomsen, 1986) has evolved over time. One can 

use the classical solution for the Christoffel equation 

(Musgrave, 1970) and compute phase variables (velocities 

and angles) and find group variables (group velocities and 

angles). That can be done for both acquisition geometries, 

surface-to-surface, and VSP. The slowness solution is 

also suitable and serves for both types of acquisition 

geometries including directly nonhyperbolic moveout 

analysis (Tsvankin and Grechka, 2011; Grechka et al., 

1999). These are two common approaches used in the 

exploration of geophysics for oil and gas purposes. A new 

theoretical tool was proposed recently, the Christoffel 

equation in the polarization variables (Grechka, 2020) 

which is important to mention for future practical 

applications. Therefore, we have introduced Table 1 with 

a brief classification of the main theoretical methods to 

resolve the Christoffel equation and some of the first 

references to appear in the literature.  

 

Summarizing, rocks can be anisotropic for various 

reasons such as the presence of fractures or strong 

lithological changes (Thomsen, 1986; Tsvankin and 

Grechka, 2011; Grechka and Tsvankin, 1997; Grechka et 

al., 1999). Omitting the presence of anisotropy can cause 

distortions in seismic imaging that turns into economic 

losses due to well-location errors. On the other hand, 

anisotropy can be in some cases the answer to the 

problems of identifying different types of lithology. 

Therefore, the characterization of anisotropy by 

estimating elastic constants is essential for the 

development of velocity estimation techniques, modeling, 

and 2-D and 3-D seismic processing in order to reduce 

exploration risk. 

 

In this work, we outline the theoretical computational 

work performed using the ellipsoidal orthorhombic 

approximation that was introduced years ago (Contreras 

et al., 1997, 1998). We show how to use their azimuthal 

dependence and also the way they are visualized in the 

symmetry vertical planes of orthorhombic media with 

their main implications as one more approximation to the 

complex field of elastic wave propagation in low 

symmetry systems. Finally, we give a theoretical 

conversion P – Si point derivation for the ellipsoidal 

orthorhombic case that can be used in anisotropic signal 

processing. 

 

Table 1. The different solutions for the eigenvalues of the 

Christoffel equation using the normal wave front, the 

slowness, and the polarization vector. 

Eigenvalues of the Christoffel equation for phase 

velocities Γ(n) as function of the wave front normal 

vector n. These eigenvalues can be used for both types 

of acquisition geometries (Grechka, 2017; Musgrave, 

1970; Thomsen, 1986). 

Eigenvalues of the Christoffel equation Γ(p) for phase 

slowness p. These eigenvalues can be used for both 

kinds of acquisition geometries (Tsvankin and Grechka, 

2011; Grechka et al., 1999). 
Eigenvalues of the Christoffel matrix Γ(U) for the 

polarization vector U when they are considered as 

variables of the phase slowness function p(U) (Grechka, 

2020). 
 

Ellipsoidal seismic velocities in orthorhombic media 

for vertical seismic profiles 

The analysis using the normal moveout velocities was 

started years ago. It proposed a wave equation based on 

normal moveout velocities (Stovas, 1998). The use of 

elliptical seismic velocities was widely used for isotropic 

and anisotropic media (Levin, 1978; Byun, 1982; Muir, 

1990; Dellinger, 1991). Furthermore, in (Contreras et al., 

1997) it was shown that using a Taylor expansion near the 

vertical planes of symmetry for an orthorhombic elastic 

media, one can approximate the whole elastic field 

obtaining theoretical expressions for the phase and group 

seismic velocities and angles near the two vertical axes 

using Silicon graphic stations for their visualization. 

Sometime later, the work was validated using an 

inversion procedure (Contreras et al., 1998) to obtain the 

elastic constants for the Cracked Greenhorn Shale 

(Dellinger, 1991), and was considered of practical interest 

to test vertical seismic profiles acquisitions in 

orthorhombic media. That procedure was performed with 

the help of the eigenvalues of the Christoffel equation 

Γ(n) using the wave front normal vectors n with 

azimuthal dependence following the book by Musgrave 

(1970) and the idea between the phase and group 

velocities developed in (Muir, 1990) comparing with the 

classical approach where the determinant F = Det(Γik(n) – 

ρV2δik) = 0 allows to resolve for the phase velocities 

(Musgrave, 1970). 

 

Sometime later, Grechka and Tsvankin (1997) pointed out 

to the author of this work that the same procedure can be 

obtained using the eigenvalues of the Christoffel equation 
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using the eigenvalues of the Christoffel equation Γ(p) for 

the phase slowness p, with several advantages (Hao and 

Stovas, 2014). Among them, the eigenvalues of the 

slowness vector p can be used for both kinds of 

acquisition geometries by means of the Taylor expansion 

that allows hyperbolic or nonhyperbolic normal moveout 

analysis using the second or the fourth derivative terms 

where the azimuthal variables are explicit functions of the 

vertical slowness q of equation (1). Henceforth, following 

the general expansion for low symmetry elastic systems 

with azimuthal dependence in terms of the slowness, the 

general equation is written as a Taylor expansion (Hao 

and Stovas, 2014): 

 

 
Fig. 1. The elastic response impulses with their respective azimuthal and polar angles in panel (a). Panel (b) corresponds 

to the vertical seismic profile with incident P response impulses and reflected Si response impulses. 

 

Fig. 2. The azimuthal numerical calculation of the three group velocities (response impulses) in orthorhombic media 

according to (Contreras et al., 2014) for two values of the polar angle in the case of the Cracked Greenhorn Shale using 

the exact solution (blue color) and the ellipsoidal approximation (red color). The main difference is observed for the 

transversal elastic mode S1 when the polar angle is 15°. 
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(1) 

 

where q is the vertical slowness pz as a function of the 

horizontal slowness px and py. In this way, the use of the 

Christoffel equation Γ(n) as function of the wave normal 

vector n (Musgrave, 1970) and the Christoffel equation 

Γ(p) as function of the slowness vector p (Hao and 

Stovas, 2014) resulted equivalent in the direct (Stovas, 

1998) and inverse (Levin, 1978) analysis of vertical 

seismic profiles in orthorhombic elastic media near the 

vertical axis of symmetry and with azimuthal angular 

dependence. The expression for the derivatives of second 

order is given by the following equation (Hao and Stovas, 

2014): 

 

𝑞𝑖𝑗
0 =  

𝜕2𝑞

𝜕𝑝𝑖𝜕𝑝𝑗

= − 
𝐹𝑝𝑖  ,𝑝𝑗 + 𝐹𝑝𝑖 ,𝑞  𝑞𝑗 + 𝐹𝑝𝑗 ,𝑞  𝑞𝑖 + 𝐹𝑞,𝑞  𝑞𝑖   𝑞𝑗

𝐹𝑞

  
 

(2) 

 

where F as function of slowness is given by the following 

determinant: 

 

𝐹 = 𝐷𝑒𝑡 [𝐶𝑖𝑗𝑙𝑘  𝑝𝑗 𝑝𝑙  − 𝛿𝑖𝑘 ]  = 0 
 

 

and the general relation for the slowness vector in term of 

the phase elastic velocities is: 

 

𝒑 =  𝑝1 , 𝑝2 , 𝑞 = 𝑉−𝟏 𝜃1 , 𝜃2  𝒏 
 

 

In this case the odd terms, q0
i = q0

ijk = 0 and 

nonhyperbolic q0
ijkl moveout, have to be neglected in the 

analysis performed below. 

 

In (Contreras et al., 2014), using equations (1) and (2), we 

were able to visualize the approximate solution for two 

azimuthal angles in orthorhombic media for the three 

response impulses using the slowness approach 

numerically of equation (1) and the general solution of the 

Christoffel equation in terms of the normal vector for the 

Cracked Greenhorn Shale (Levin, 1978). Figure 1 

schematically shows the elastic response impulses with 

their respective azimuthal and polar angles. Figure 2 

shows the results, where it can be seen that the transversal 

response impulse S2 has different solution depending on 

the parameters in equation (1) (blue ellipse) or the general 

exact solution (red ellipse) as is explained below. The 

other elastic modes (namely the P and S2/SH response 

impulses) are well approximate in this case using the 

slowness approach (units for the elastic stiffnesses are 

given in the CGS units [g/(cm × s2)] and the density  = 1 

[g/cm3]):  

 

 𝐶𝑖𝑗𝑙𝑘 =

 

 
 
 

336.56 117.27 103.32 0 0 0
117.27 310.00 92.27 0 0 0
103.32 92.27 223.95 0 0 0

0 0 0 49.09 0 0
0 0 0 0 54.00 0
0 0 0 0 0 96.36 

 
 
 

 

 
 

In particular, we used one general expression that 

condensed the three elastic fields, namely the longitudinal 

(P) and the two transversal modes (S1 and S2 called 

sometimes the shear-vertical SSV and shear-horizontal SSH, 

respectively). Using the Voigt notation that changes the 

indices of the fourth order elastic tensor “ijlk” by the new 

ones “ij”, one has (Contreras et al., 1997, 1998): 

 
1

𝑊𝑖 𝜙1,𝑖 , 𝜙2,𝑖 
=   

1

𝑊𝑖,𝑧
 [cos 𝜙1,𝑖]

2 
 

+ [sin 𝜙1,𝑖]
2    

1

𝑊𝑁𝑀𝑂,[𝑥𝑧 ]
𝑖

 [cos 𝜙2,𝑖]
2 + 

1

𝑊𝑁𝑀𝑂,[𝑦𝑧 ]
𝑖

 [sin 𝜙2,𝑖]
2  

 
(3) 

 

where Wi correspond to the square of the group velocities 

times the density ρ of the medium as function of the group 

polar (first sub-index 1) azimuthal (second sub-index 2) 

angles ϕI according to Figure 1 panel (a) and Wi(ϕ1,i, ϕ2,i) 

= ρvi
2(ϕ1,i, ϕ2,i) with the symbol i representing the three 

modes, i = P, S1 or S2. Figure 1 (general schematic results 

where P response impulses are shown in brown color and 

Si modes in yellow color) shows the group angles and 

velocities (left a-panel) and the use in VSP profiles with 

“P-Si” conversion points at subsurface interface with 

coordinates (x, y, z) (right b-panel).  

 

The normal moveout coefficients in the form of equation 

(3) are respectively in the case of orthorhombic symmetry 

(Contreras et al., 1997, 1998): 

 

𝑊𝑁𝑀𝑂,𝑥𝑧
𝑃 =  𝑐55 + 

 𝑐13 + 𝑐55 2

 𝑐33 − 𝑐55 
, 
 

  𝑊𝑁𝑀𝑂,𝑦𝑧
𝑃   =  𝑐44 + 

 𝑐23 + 𝑐55 2

 𝑐33 − 𝑐44 
 , 
 

 

 

(4) 

 

𝑊𝑁𝑀𝑂 ,𝑥𝑧
𝑆1 =  𝑐66  

, 

 𝑊𝑁𝑀𝑂,𝑦𝑧
𝑆1 =  𝑐22 + 

(𝑐23 + 𝑐44)2

(𝑐44 − 𝑐33)
 

 

 

 

(5) 
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and 

 

𝑊𝑁𝑀𝑂,𝑥𝑧
𝑆2   =  𝑐11 +  

(𝑐13  +  𝑐55)2

(𝑐55 − 𝑐33)
 

 

𝑊𝑁𝑀𝑂,𝑦𝑧
𝑆2   =  𝑐66  

 

 

 

(6) 

 

The results of azimuthal comparation for the three 

orthorhombic modes using equations (4)-(6), and the 

exact solution given in (Musgrave, 1970) by the 

expression vgi = cijkljkl/Wi
1/2, where the Wi are the 

square phase velocities, the cijkl are the elastic constants, 

the j and k are the eigenvectors, and l is the normal 

direction were shown in Figure 2.  

 

The corresponding VTI elastic media analysis of elliptical 

dependence on the velocity and the elastic constant 

inversion was realized in (Michelena, 1994). 

 

In general, one can resolve the Christoffel equation using 

the eigenvalues of the phase velocities of Γ(n) matrix as a 

function of the wave front normal vector n for each 

 
Fig. 3. The exact solution of the Greenhorn shale case in the vertical planes of symmetry for a homogeneous 

orthorhombic anisotropy. 

 

 
Fig. 4. The ellipsoidal approximation using the same elastic stiffnesses of Figure 3. Notice the difference in the response 

impulses S1 and S2 where the group velocity S1 is smaller than S2 if the stiffness C13 has a bigger value in the [XZ] plane. 
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vertical plane of symmetry, namely, the [XZ] and the 

[YZ] planes (the horizontal [XY] plane won’t be 

considered in this case but in (Contreras et al., 1998) it is 

given the procedure on how to solve for the [XY] case. 

We can do it using the Cracked Greenhorn shale (Levin, 

1978) separating the corresponding matrix for each 

vertical symmetry plane using the exact solution and the 

correspondent ellipsoidal approximation. The results are 

given in Figures 3 and 4.  

 

Let us write the elastic matrix elements C in the Voigt 

notation. The orthorhombic group has nine independent 

elastic constants C11, C22, C33, C44, C55, C66, C12, C13, C23 

plus the three no diagonal depending ones given by the 

symmetric identity C = C, i.e. C21, C31, C32 making 

twelve in total (Musgrave, 1970). It makes a complicated 

numerical solution for response impulses for the whole set 

that were visualized in (Contreras et al., 1997, 1998) since 

we have to solve for both the polar and azimuthal group 

angles.  

 

In the case of a hexagonal (VTI medium), one has 

however five components for the [XZ] vertical plane, i.e. 

C11, C33, C44, C66 and the nondiagonal ones C13 and the 

element C12 = C11 – 2C66. This case can be solving in a 

rather less complicated eigenvalues form than the 

orthorhombic one since one has a unique polar angle with 

respect to the vertical axis of symmetry (Musgrave, 

1970). The [YZ] vertical plane is represented by the 

stiffnesses C22, C33, C55, C66 and the nondiagonal ones C23 

and the element C12 = C22 – 2C66. All values are taken 

from the Cracked Greenhorn shale (Levin, 1978) 

orthorhombic set of fractures. We visualize independently 

for each vertical symmetry plane using an algebraic 

solver. The [XZ] and [YZ] solutions with the Greenhorn 

shale partial matrices are represented in Figure 3 for both 

the symmetry planes. 

 

The main difference for the Greenhorn shale simulation of 

the three exact elastic response-impulses according to the 

results shown in Figure 3 are seen mainly in the S2 

component where the triplication defined as three 

different values of the S2 group velocities with a fixed 

polar group angles around 45 degrees are more noticeable 

in the [XZ] than in the [YZ] symmetry plane, see both 

orange circles in the right and left planes of Figure 3. This 

qualitative is explained because in the panel a, the elastic 

constant that controls the triplication has a value of C13 = 

103.3 [g/(cm × s2)] meanwhile the stiffness that control 

the triple S2 response impulse value in the [YZ] plane C23 

= 93.3 [g/(cm × s2)], i.e. C13 >= C23. 

 

In the case of the ellipsoidal approximation (Contreras et 

al., 1997, 1998), the same calculations with equations (4)-

(6) are shown in Figure 4. It can be seen that for the case 

of the right panel in Figure 4 representing the ellipsoidal 

case of the [XZ] symmetry plane and where the elastic 

constant C13 is bigger and gives an augmented exact 

solution triplication the approximation fails and the S1 

response impulse is calculated with almost not accuracy 

given values on the whole plane smaller than the S2 

response impulse. This is also seen in Figure 8 of 

(Contreras et al., 1998) when the relative error in the 

inversion of C13 is bigger and constant for the whole 

range of azimuthal group angles. In the [YZ] plane of 

symmetry, where the elastic constant C23 is smaller and 

gives a smaller exact solution triplication the 

approximation works fairly well and the S1 response 

impulse is calculated with certain accuracy given values 

on the whole plane bigger than the S2 response impulse 

(right panel in Figure 4). Finally, this is also seen in 

Figure 9 of (Contreras et al., 1998) when the relative error 

in the inversion of C23 is smaller than the case for C13. 

The relative error increases for the azimuthal group angles 

variation explaining the conjecture that emerged with the 

ellipsoidal approximation in the year 1998, when the 

inversion of the elastic constants was made for the first 

time using the ellipsoidal approximation (Contreras et al., 

1998) with respect to the differences in the inversion of 

C13 and C23. 

 

Based on the previous analysis one can see why the 

ellipsoidal approximation works well in case of the 

cracked Greenhorn shale with small elastic stiffnesses C13 

and C23 and it can finally define the ellipsoidal 

orthorhombic approximation as the one that works well in 

VSP geometries with small elastic stiffnesses C13 and C23 

and where the vertical symmetry planes set close to one 

another for cracked perpendicular homogeneous media. 

 

 

Kinematical derivation of the conversion point in 

orthorhombic media near the vertical axis of 

symmetry 

On the other hand, seismic velocity analysis represents 

one of the most widely used processing techniques for the 

treatment of geophysical seismic data in the oil and gas 

industry. A method of acquisition commonly used is the 

Common-Mid-Point (CMP) method. The general idea of 

this method is to acquire a series of traces (gather) which 

reflect from the same common subsurface mid-point. 

Similarly, to group seismic traces of multicomponent 

signals under the CMP criterion, an expression for the 

conversion point of each of the traces can be used to 

group those that have the same CMP. General expressions 

were developed previously for the calculation of the 

conversion of “P-Si” points in isotropic (Fromm et al., 

1985), vertical transverse isotropy VTI (Sena and Toksöz, 

1993), horizontal transversal isotropy HTI (Hao et al., 

2013) and orthorhombic media (Xu and Stovas, 2019) 

with the goal of seismic exploration analysis. 
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However, these expressions can be simplified when it 

comes to performing analysis in a medium with azimuthal 

anisotropy such as fractured orthorhombic media with 

dependency of several elastic stiffness. In general, 

azimuthally elastic depend media such as the HTI, the 

orthorhombic and the monoclinic ones, are those with 

combinations of multiple vertical fracture sets and 

possible horizontally fine layering, they are of great 

importance for fracture characterization (Tsvankin and 

Grechka, 2011). 

 

Therefore, it is convenient to obtain expressions for the 

coordinates of the conversion “P-Si” point considering 

azimuthal variations of the velocity for any mode of 

propagation for specific acquisition geometries such as 

VSP. It will be shown how to apply a particular 

methodology developed for VTI media (Sena and Toksöz, 

1993) to derive asymptotic 3-D analytic expressions for 

the conversion point in orthorhombic media within the 

ellipsoidal approximation (Contreras et al., 1997, 1998) 

for the P-S1 and P-S2 modes. We should note that such 

expressions will be valid near a single axis of symmetry, 

such that, those with large “depths” and small “offsets”, 

which represents practical cases encountered in seismic 

velocity analysis for vertical seismic profiles and where 

the Z location of the surface source and the downhole 

receiver is known. 

 

Let us consider the case of a general homogeneous elastic 

medium with orthorhombic symmetry and a particular 

density that for simplicity we fixed equal to 1 [g/cm3], as 

shown in Figure 5 where the two vertical planes [XZ] and 

[YZ] and the ellipsoidal group velocities will be 

combined with the help of a trigonometric analysis, the 

used of the Fermat theorem and the derivation of travel 

times following Sena and Toksöz (1993), arriving to 

analytical expressions of the conversion point in the 

ellipsoidal anisotropic case.   

In Figure 5, it can be seen that for the incident P 

response-impulse, the following equations are true as 

function of the response-impulse polar (denoted by index 

1) and response-impulse azimuthal angles (denoted by 

index 2): 

 

cos2∅1𝑃 =
𝑍2

𝑍2 + 𝑋𝑗
2 + 𝑌𝑗

2 , sin2∅1𝑃 =
𝑋𝑗

2 + 𝑌𝑗
2

𝑍2 + 𝑋𝑗
2 + 𝑌𝑗

2  , 
 

cos2∅2𝑃 =
𝑋𝑗

2

𝑋𝑗
2 + 𝑌𝑗

2 , sin2∅2𝑃 =
𝑌𝑗

2

𝑋𝑗
2 + 𝑌𝑗

2   
 

 

 

(7) 

 

It can be also written down for the reflected shear 

response-impulses (Si with the index i = 1 or SV, and or 2 

or SH). It follows that as a function of the corresponding 

shear azimuthal angles that control the response impulse 

in the horizontal plane [XY] one has 

 

cos2∅1𝑆𝑗 =
𝑍2

𝑍2 +  𝑋 − 𝑋𝑗  
2

+ (𝑌 − 𝑌𝑗 )2
 

 , 

sin2∅1𝑆𝑗 =
 𝑋 − 𝑋𝑗  

2
+  𝑌 − 𝑌𝑗  

2

𝑍2 +  𝑋 − 𝑋𝑗  
2

+ (𝑌 − 𝑌𝑗 )2
 

 

 

 

(8) 

 

By the geometrical congruence of similar triangles, it 

follows that ϕ2P = ϕ2Sj and therefore, the following 

relationship takes place: 

 

cos2∅2𝑆𝑗 = cos2∅2𝑃 =
𝑋𝑗

2

𝑋𝑗
2 + 𝑌𝑗

2 

 

sin2∅2𝑆𝑗 = sin2∅2𝑃 =
𝑌𝑗

2

𝑋𝑗
2 + 𝑌𝑗

2 

 

 

 

(9) 

For equations (8) and (9), j = 1, 2 are the two propagation 

modes S1 and S2, respectively; ϕ1Sj and ϕ2Sj and are the 

 
Fig. 5. The general scheme of the P-Si conversion point on a 3-D line in a homogeneous anisotropic medium with 

orthorhombic symmetry. 
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polar and azimuthal group angles for the propagation 

modes Sj.  

 

The kinematic travel time analysis procedure is used a 

continuation with the aim of the Fermat theorem (Sena 

and Toksöz, 1993). The expression that determines the 

travel time of the incident wave P and reflected wave Sj is 

the sum of the two travel times T = TPi + TSj, where each 

travel time corresponds to the expressions to be derived 

using the notation from the previous section and Figure 5, 

where TPi is the travel time from the incident Pi wave and 

TSj is the travel time for the reflected Sj wave. Considering 

elementary trigonometry and looking at the general 

scheme shown in Figure 5, an expression for both travel 

times, i.e. TPi and TSj as function of the group angles and 

the elastic constants can be conveniently written as 

 

 𝑇𝑃𝑖 =
𝑍

𝑉𝑃 ∅1𝑃,∅2𝑃   cos ∅1𝑃

, 𝑇𝑆𝑗 =
𝑍

𝑉𝑆𝑗  ∅1𝑆𝑗 ,∅2𝑆𝑗    cos∅1𝑠𝑗

 

 
 

where VP and VSj are the response impulses (group 

velocities) for the propagation longitudinal and 

transversal elastic modes, respectively, where by means 

of some straightforward but lengthy algebra a more 

suitable for the analysis in orthorhombic fracture media 

near the vertical axis expression for the converted P-Si 

modes are derived.  

 

The square of the response-impulses as function of the 

azimuthal angles can be given by the mathematical 

expression:   

 

𝑊𝑔𝑖
−1 ∅1,𝑖 ,∅2,𝑖 = 𝐶0

𝑖 + 𝐶1
′′ 𝑖 ∅2,𝑖 sin2∅1,𝑖  

 

where C0
i is related to the velocity of propagation in the 

vertical axis, and C1
”i has the following anisotropic 

dependence form in the ellipsoidal case: 

 

𝐶1
′′ 𝑖(∅2,𝑖) = 𝑊𝑁𝑀𝑂[𝑥,𝑧]

−1,𝑖 − 𝑊𝑧
−1,𝑖 +  𝑊𝑖,𝑁𝑀𝑂 𝑦 ,𝑧 

−1 − 𝑊𝑖,𝑁𝑀𝑂 𝑥,𝑧 
−1  sin2∅2,𝑖   

 

Taking into account the mathematical expression for the 

different propagation modes developed in the previous 

paragraphs and considering that the group polar angles are 

small but the azimuthal angles can have any allowed 

value in the horizontal plane, the travel times expressions 

for longitudinal and transversal response-impulses in 

ellipsoidal orthorhombic elastic media can be written 

using the geometry considerations sketched in Figure 5.  

 

Henceforth, for the P wave response impulse the incident 

3-D azimuthal travel time takes the following form:  

 

𝑇𝑃𝑖 =
1

4 𝐶0
𝑃𝑍

 2𝑍2 + 𝑋1
2 + 𝑌1

2  2𝐶0
𝑃 + 𝐶1

′′ 𝑃sin2(∅1,𝑝   

 
(10) 

and also, for the S1 and S2 transversal response impulses, 

the reflected travel times are given according to 

 

𝑇𝑆𝑗 =
1

4 𝐶0
𝑠𝑍

 2𝑍2 +  𝑋 − 𝑋1 
2 +  𝑌 − 𝑌1 

2  2𝐶0
𝑠 + 𝐶1

′′ 𝑠sin2(∅1,𝑠 ,   

 
(11) 

 

Once an approximate expression of the ray paths travel 

times of the different response impulses have been 

obtained, the conversion point can be found, using 

Fermat's theorem of the minimum time considering that in 

general one has (Xj, Yj) < (X, Y).  

 

In the ellipsoidal orthorhombic elastic case, we start from 

the Fermat theorem for each horizontal azimuthal 

component ∂T/∂Xj = ∂T/∂Yj = 0. On the other hand, for the 

Z direction, the velocity is constant, we suppose that the 

depth Z is known (particularly this is the fact in the case 

of vertical seismic profiles), and therefore, asymptotic 

analysis is performed only for the Xj and Yj components. 

Taking into account the total horizontal travel time for the 

three responses impulses and their respectively 

derivatives using the partial derivatives expression ∂T/∂Xj 

= (∂TPi/∂Xj) + (∂TSj/∂Xj), and considering equation (10), 

the following general expression near the vertical axis is 

derived after some algebraic manipulations: 

 

𝜕𝑇

𝜕𝑋𝑗

=
1

𝑍

 
 

 𝑋𝑗

 𝐶0
𝑃
𝑊𝑁𝑀𝑂 𝑥 ,𝑧 

−1,𝑃 +
𝑋𝑗 − 𝑋

 𝐶0
𝑆𝑗

𝑊𝑁𝑀𝑂 𝑥,𝑧 
−1,𝑆𝑗

 
 

 

= 0,  

 
 

which means that  

 

 
 

 𝑋𝑗

 𝐶0
𝑃
𝑊𝑁𝑀𝑂 𝑥 ,𝑧 

−1,𝑃 +
𝑋𝑗 − 𝑋

 𝐶0
𝑆𝑗

𝑊𝑁𝑀𝑂 𝑥,𝑧 
−1,𝑆𝑗

 
 

 

= 0. 

 
 

Solving for Xj, one arrives at the first general expression 

of one of the conversion point components for 

orthorhombic ellipsoidal media near the vertical axis of 

symmetry as function of normal moveout square 

velocities:  

 

𝑋𝑗 = 𝑋
 𝐶0

𝑃𝑊𝑁𝑀𝑂 𝑥 ,𝑧 
−1,𝑆𝑗

 𝐶0
𝑃𝑊

𝑁𝑀𝑂 𝑥,𝑧 
−1,𝑆𝑗

+  𝐶0
𝑆𝑗

𝑊𝑃,𝑁𝑀𝑂 𝑥 ,𝑧 
−1

   

 

 

(12) 

 

Similarly, using ∂T/∂Yj = (∂TPi/∂Yj) + (∂TSj/∂Yj), 

multiplying the traveltime derivative by 

Z(C0
PC0

Sj)1/2, and making the respective 

factorization, a general expression can be found for 

the second horizontal component Yj considering 

equation (11) to get 
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𝑌𝑗 = 𝑌
 𝐶0

𝑃𝑊𝑁𝑀𝑂 𝑦,𝑧 
−1,𝑆𝑗

 𝐶0
𝑃𝑊

𝑁𝑀𝑂 𝑦 ,𝑧 
−1,𝑆𝑗

+  𝐶0
𝑆𝑗

𝑊𝑁𝑀𝑂 𝑦,𝑧 
−1,𝑃

 

 

 

(13) 

 

In this way, it has been possible to obtain asymptotic 

expressions for the coordinates of the conversion point for 

a medium with orthorhombic elliptical anisotropy 

considering azimuthal group angle variations that 

represents a perpendicular set of fractures.  

 

The specific form of the horizontal coordinates in the 

[XY] plane for the conversion point in an orthorhombic 

medium for the conversion form is the following (X1, Y1) 

pair for the P-S1 conversion point: 

 

𝑋1 = 𝑋
 𝐶0

𝑃𝑊𝑁𝑀𝑂 𝑥,𝑧 
−1,𝑆1

 𝐶0
𝑃𝑊𝑁𝑀𝑂 𝑥,𝑧 

−1,𝑆1 +  𝐶0
𝑆1𝑊𝑁𝑀𝑂 𝑥,𝑧 

−1,𝑃

  

 

  𝑌1 = 𝑌
 𝐶0

𝑃𝑊𝑁𝑀𝑂 𝑦,𝑧 
−1,𝑆1

 𝐶0
𝑃𝑊,𝑁𝑀𝑂 𝑦,𝑧 

−1,𝑆1 +  𝐶0
𝑆1𝑊𝑁𝑀𝑂 𝑦,𝑧 

−1,𝑃

 

 

 

 

 

(14) 

 

For the P-S2 conversion point analogously we find the 

following (X2, Y2) pair: 

 

𝑋2 = 𝑋
 𝐶0

𝑃𝑊𝑁𝑀𝑂 𝑥,𝑧 
−1,𝑆2

 𝐶0
𝑃𝑊𝑁𝑀𝑂 𝑥,𝑧 

−1,𝑆2 +  𝐶0
𝑆2𝑊𝑁𝑀𝑂 𝑥,𝑧 

−1,𝑃

 

 

𝑌2 =  𝑌
 𝐶0

𝑃𝑊𝑁𝑀𝑂 𝑦,𝑧 
−1,𝑆2

 𝐶0
𝑃𝑊𝑁𝑀𝑂 𝑦,𝑧 

−1,𝑆2 +  𝐶0
𝑆2𝑊𝑁𝑀𝑂 𝑦 ,𝑧 

−1,𝑃

 

 

 

 

 

 

(15) 

 

This is important for different reasons such as the analysis 

of seismic data acquired in multicomponent VSP surveys 

that is crucial for the correct interpretation of the data 

(positioning of events and imaging). Physically in the 

interface where the conversion occurs, the energy carried 

by the longitudinal response-impulse is converted into 

energy carried now by the transversal modes.  

 

One way to corroborate the general validity of these 

results is the reduction from equations (14) and (15) to the 

isotropic limit (Fromm et al., 1985). For the isotropic 

case, we have that for the longitudinal response impulses 

it follows that the new normal moveout square velocities 

are 

 

𝑊𝑃,𝑁𝑀𝑂 𝑥,𝑧 
−1 = 𝑊𝑃,𝑁𝑀𝑂 𝑦,𝑧 

−1 = 𝐶0
𝑃 =

1

𝑉𝑃
2   

 
For the transversal elastic modes, one has that the square 

of the normal moveout velocities is reduced to  

 

𝑊𝑆𝑗 ,𝑁𝑀𝑂 𝑥,𝑧 
−1 = 𝑊𝑆𝑗 ,𝑁𝑀𝑂 𝑦,𝑧 

−1 = 𝐶0
𝑆𝑗

=
1

𝑉𝑆
2  

 
 

Replacing those expressions back in equations (14) and 

(15), one finally obtains 

 

(𝑋𝑗 , 𝑌𝑗 ) =  𝑋
1

1 +
𝑉𝑆

𝑉𝑃

 , 𝑌
1

1 +
𝑉𝑆

𝑉𝑃

      

 
which are the well-known expressions for an isotropic 

elastic medium (Fromm et al., 1985). 

 

CONCLUSION  

 

First, we conclude that simple analytical expressions 

using the Fermat theorem and for practical multi-

walkaway velocity analysis such as in vertical seismic 

profiles of the conversion “P - Si” points that belong to a 

single interface in orthorhombic ellipsoidal elastic media 

with general azimuthal dependence (including near offsets 

and small polar angles) were derived and compared with 

the isotropic case.  

 

Second, we explain the difference in the inversion of the 

elastic constants C13 and C23 within the ellipsoidal 

approximation (Contreras et al., 1998) with respect to the 

differences in the growth of the azimuthal angle. The 

relative error in the inversion of C13 remained constant for 

azimuthal angle values between 0° and 90°. Meanwhile, 

the relative errors in the inversion of the stiffness C23 

increased with the growth of the azimuthal angle (see in 

Figures 7 and 8 in (Contreras et al., 1998) respectively). 

We find that is due to the size of the triplication in each 

vertical symmetry plane and as it can be seen in Figure 3, 

higher stiffness input values for C13 set constant inverted 

values for arbitrary azimuthal angles and constant higher 

relative errors. 

 

As additional points, a very brief analysis of the use of the 

Christoffel equation in different representations with the 

respective references is mentioned for future works. 

Finally, we recommend the study of orthorhombic 

systems using the same methodology as the one 

represented in (Contreras et al., 2019), in particular, to 

observe the P response impulse with imaging purposes 

implementing perfect matched layer boundary conditions, 

staggered finite-difference grid 3-D schemes, and 

Valgrind’s memcheck, to simulate a 3D elastic wave 

generating synthetic seismograms and screenshots. We 

also point out the inclusion of pressure for studies and 

visualization in anisotropic media using VSP profiles with 

downhole receivers as the one represented in (Guerrero, 

2022). My notes on the prediction of pressure induce 

phonon instabilities via computational modelling of 
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Acoustic wave propagation in isotropic and anisotropic 

crystals. DOI: https://doi.org/10.13140/RG.2.2.34112. 

81925). 
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