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ABSTRACT 

 

Lorentz's statement is known that "... Heaviside and Hertz gave a clear and concentrated form to Maxwell's equations." 

At present, after Heaviside and Hertz, the applicability of Maxwell's equations to all phenomena of electrodynamics and 

electrical devices is indisputable. But this indisputability applies only to the case when these equations are solved 

numerically. The analytical solution – the wave equation of electrodynamics, which contradicts the law of conservation 

of energy and many analytical consequences of Maxwell's equations, an indispensable attribute of which is the vector 

potential – are very far from reality. This happened because Maxwell's equations, which the author along with many 

admire, must be correctly resolved. Below is a discussion of what these correct decisions are.  

 

Keywords: Maxwell's equations, electrodynamics, electrical field strengths and magnetic field strengths, ocean square 

waves.  
 

 

INTRODUCTION  

 

My criticism of the theory of electromagnetism follows 

not from logic, not from my own postulates, not from the 

notorious physical meaning but from mathematics. The 

author of this paper has been publishing mathematically 

proven changes in some provisions of electrodynamics for 

10 years in Russian and English in the public domain and 

the author is extremely surprised at the lack of a keen 

interest in fundamentally new solutions: The author 

would like to hear opinions on agreement or refutation. 

That is why the author has written this article.  

 

The author of this paper will not refer to a specific author, 

so as not to accuse someone of all the sins of the modern 

theory of electromagnetism. Let this specific author join 

the discussion himself/herself (if the specific author wants 

to). The author of this paper will not, where necessary and 

not necessary, use vector calculus because (as will be 

clear from what follows) it has played a cruel joke on 

electrodynamics: with its help, the reader can easily 

inadvertently or deliberately get an incorrect result, and 

sometimes its use simply does not allow the reader to get 

the real result. 

 

The author of this paper will start from the moment when, 

according to the well-known statement of Lorentz, "... 

Heaviside and Hertz gave a clear and concentrated form 

to Maxwell's equations." They are known to have 

obtained from twelve Maxwell’s equations, four 

equations in the vector form. Let's write them down as 

follows: 

rot 𝐄 + 𝜇
𝜕𝐇

𝜕𝑡
= 0 

 

 

(1) 

rot 𝐇 − 𝜀
𝜕𝐄

𝜕𝑡
= 𝐉 

 

 

(2) 

div 𝐄 = 0  (3) 

div 𝐇 = 0  (4) 

 

where E, H, J are the vectors of electrical field strengths, 

magnetic field strengths, and conduction currents; ε, μ are 

the electric permittivity and the magnetic permeability, 

respectively. In Cartesian coordinates {x, y, z}, this set of 

equations has the following form: 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
𝜕𝐻𝑧

𝜕𝑦
−
𝜕𝐻𝑦

𝜕𝑧
− 𝜀

𝜕𝐸𝑥
𝜕𝑡

− 𝐽𝑥 = 0

𝜕𝐻𝑥

𝜕𝑧
−
𝜕𝐻𝑧

𝜕𝑥
− 𝜀

𝜕𝐸𝑦
𝜕𝑡

− 𝐽𝑦 = 0

𝜕𝐻𝑦

𝜕𝑥
−
𝜕𝐻𝑥

𝜕𝑦
− 𝜀

𝜕𝐸𝑧
𝜕𝑡

− 𝐽𝑧 = 0

𝜕𝐸𝑧
𝜕𝑦

−
𝜕𝐸𝑦
𝜕𝑧

+ 𝜇
𝜕𝐻𝑥

𝜕𝑡
= 0

𝜕𝐸𝑥
𝜕𝑧

−
𝜕𝐸𝑧
𝜕𝑥

+ 𝜇
𝜕𝐻𝑦

𝜕𝑡
= 0

𝜕𝐸𝑦
𝜕𝑥

−
𝜕𝐸𝑥
𝜕𝑦

+ 𝜇
𝜕𝐻𝑧

𝜕𝑡
= 0

−
𝜕𝐸𝑥
𝜕𝑥

−
𝜕𝐸𝑦
𝜕𝑦

−
𝜕𝐸𝑧
𝜕𝑧

+
𝜌

𝜀
= 0

𝜕𝐻𝑥

𝜕𝑥
+
𝜕𝐻𝑦

𝜕𝑦
+
𝜕𝐻𝑧

𝜕𝑧
−
𝜎

𝜇
= 0

 

 

 

 

 

 

 

 

 

 

(5) 
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The author notes right away that not a single bad word 

about these equations will be said further. Moreover, the 

author has no doubts about the validity of these equations, 

and it seems that these equations are thrown into our 

civilization through the minds of their creators, as a 

concentrated source of knowledge. What is a consequence 

of these equations turns out to be true in the experiment, 

and the consequences themselves take on an elegant 

mathematical form after cumbersome mathematical 

transformations. Such a result in itself creates confidence 

in the correctness of the investigation. 

 

So, what's the matter that you want to fix? - the reader 

will exclaim. The point is that the equations must be 

correctly resolved.` 

 

The creators themselves introduced some ideas that are 

not visible in the equations but prevent getting the correct 

solution of these equations. For instance, 

 

• The wave equation contradicts the law of conservation 

of energy; 

• The flow of energy entering the wire from the outside 

does not go along and outside the wire; 

• Analytical solution of Maxwell's equations is not 

unique; 

• The vector potential used by Maxwell when deriving the 

equations contradicts these equations; 

• Lorentz's magnetic force equation does not complement 

Maxwell's equations’ set but follows from it; 

• The minimum principle is not a necessary and sufficient 

condition. 

 

At present, after Heaviside and Hertz, the applicability of 

Maxwell's equations to all phenomena of electrodynamics 

and electrical devices without exception is undeniable (as 

will be clear from what follows). However, it is not 

always possible to describe these phenomena and devices 

in the form of a solution to the complete set of Maxwell's 

equations, and not some subsets of this set. The author 

shows in my publications that, by applying the full set of 

Maxwell's equations, it is possible to find a solution for 

those experimental conditions when the experiment, it 

would seem, contradicts these equations. 

 

On the wave equation 

Let us consider the simplest case, namely the solution of 

Maxwell's equations for a vacuum in the absence of the 

longitudinal strengths and the conduction currents. The 

wave equation in this case takes the following form: 

 

𝐸𝑥 = 𝑒𝑥cos 𝑎𝑥 + 𝑏𝑦 + 𝜒𝑧 +𝜔𝑡 + 𝜑0   (6) 

𝐸𝑦 = 𝑒𝑦cos 𝑎𝑥 + 𝑏𝑦+ 𝜒𝑧 +𝜔𝑡 + 𝜑0   (7) 

𝐻𝑥 = ℎ𝑥cos 𝑎𝑥 + 𝑏𝑦 + 𝜒𝑧 +𝜔𝑡 +𝜑0   (8) 

𝐻𝑦 = ℎ𝑦cos 𝑎𝑥 + 𝑏𝑦 + 𝜒𝑧 +𝜔𝑡 + 𝜑0   (9) 

 

where ex, ey, hx, hy, a, b, χ, ω, φ0 are some constants. 

Functions (7)-(9) are related by equations (1)-(5) and, in 

particular, by equations of the following form:  

 
𝜕𝐻𝑧

𝜕𝑦
−
𝜕𝐻𝑦
𝜕𝑧

− 𝜀
𝜕𝐸𝑥
𝜕𝑡

= 0 
 

 

(10) 

𝜕𝐻𝑥

𝜕𝑧
−
𝜕𝐻𝑧

𝜕𝑥
− 𝜀

𝜕𝐸𝑦
𝜕𝑡

= 0 
 

 

(11) 

 

which establish a connection between the constants ex, ey, 

hx, hy. According to the indicated equations, it is possible 

to construct some graphs of functions (6)-(9) that is 

shown in Figure 1. The sinusoids propagate along the z-

axis. The functions Ex, Hx oscillate along the blue x-axis, 

and the functions Ey, Hy oscillate along the red y-axis. 

 

It can be seen that in this case, the functions H coincide in 

phase with the functions E. This means that there are 

points on the z-axis where all the strengths are equal to 

zero. At these points, the wave energy is zero. Therefore, 

there is no energy at these points, i.e. in such a solution, 

the law of conservation of energy is not always satisfied, 

and this contradicts the very spirit of this law. The author 

did not discover an America because it is well-known that 

the law of conservation of energy is observed on average. 

But electrodynamics pretends that everything is fine. 

 

So, the well-known solution of Maxwell's equations in the 

form of a wave equation is not acceptable because in such 

a solution the law of conservation of energy is satisfied 

only on average. In Khmelnik (2021a), a solution to 

Maxwell's equations is proposed that does not have this 

shortcoming. In this case, it looks like this one: 

 

𝐸𝑥 = 𝑒𝑥 𝑟 sin  𝛼 + 1 𝜑 + 𝜒𝑧 +𝜔𝑡   
(12) 

𝐸𝑦 = 𝑒𝑦 𝑟 cos  𝛼 − 1 𝜑 + 𝜒𝑧 +𝜔𝑡  
 

(13) 

𝐻𝑥 = ℎ𝑥 𝑟 cos  𝛼 + 1 𝜑 + 𝜒𝑧 +𝜔𝑡   
(14) 

𝐻𝑦 = ℎ𝑦  𝑟 sin  𝛼 − 1 𝜑 + 𝜒𝑧 +𝜔𝑡  
 

(15) 

 

where 

 

𝑒𝑥 𝑟 = 𝑒𝑦 𝑟 = 𝐴𝑟 𝛼−1  
 

(16) 

ℎ𝑥 𝑟 = ℎ𝑦 𝑟 = − 
𝜀

𝜇
𝑒𝑟 𝑟  

 

 

(17) 

𝜒 = 𝜔 𝜇𝜀 
 

(18) 

𝑟 =  𝑥2 + 𝑦2 
 

(19) 

𝜑 = arctg 𝑦/𝑥   (20) 

 

with A, α, ω being some constants.  

 

Similar to the previous case, consider the graphs of 

functions (12)-(15) shown in Figure 2 for A = 1, α = 0.5, t 
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= 0, χ = 1.5. As shown in Figure 1, these sinusoids 

propagate along the z-axis. The Ex, Hx functions oscillate 

along the blue x-axis, while the Ey, Hy functions oscillate 

along the red y-axis. But here the electric field strengths 

and magnetic field strengths are shifted in phase by a 

quarter of a period and the electromagnetic energy flux on 

a cylinder of a given radius retains a certain value 

throughout the entire z-axis, despite the periodic change 

in these strengths. The consequences of this simple fact in 

many respects contradict the existing electrodynamics. 

 
Fig. 1. The visualization of the components of the electrical field strengths (Ex, Ey) and magnetic field strengths (Hx, 

Hy). 

 

 
Fig. 2. The visualization of the parameters in functions (12)-(15). 
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Now the law of conservation of energy in 

electrodynamics is preserved. Electrodynamics has 

become the same as all branches of physics.  

 

Solution of Maxwell's equations for a vacuum 

Consider this solution in the general case, i.e. with the 

existence of the longitudinal strengths (Khmelnik, 2021a). 

In this case compared to the previous one, the solution 

becomes more complicated and takes the following form 

(Khmelnik, 2021a): 

 

𝐸𝑥 = 𝑒𝑟si ∙ cos 𝜑 + 𝑒𝜑co ∙ sin 𝜑   (21) 

𝐸𝑦 = 𝑒𝑟si ∙ sin 𝜑 + 𝑒𝜑co ∙ cos 𝜑  
 

(22) 

𝐸𝑧 = 𝑒𝑧(𝑟)co  (23) 

𝐻𝑥 = ℎ𝑟co ∙ cos 𝜑 + ℎ𝜑si ∙ sin 𝜑  
 

(24) 

𝐻𝑦 = ℎ𝑟co ∙ sin 𝜑 + ℎ𝜑si ∙ cos 𝜑  
 

(25) 

𝐻𝑧 = ℎ𝑧(𝑟)si  (26) 

 

where 

 

co = cos(𝛼𝜑 + 𝜒𝑧 +𝜔𝑡)  (27) 

si = sin(𝛼𝜑 + 𝜒𝑧 + 𝜔𝑡)  (28) 

𝑒𝑧 = А𝑟−𝛼   (29) 

𝑒𝑟 = −
1

2
 
𝛼

𝜒𝑟
+
𝜒𝑟

𝛼
 𝑒𝑧  

 

 

(30) 

𝑒𝜑 =
1

2
 
𝛼

𝜒𝑟
−
𝜒𝑟

𝛼
 𝑒𝑧  

 

 

(31) 

ℎ𝑟 = 𝑘𝑒𝑟  (32) 

ℎ𝜑 = −𝑘𝑒𝜑  
 

(33) 

ℎ𝑧 = −𝑘𝑒𝑧  (34) 

𝑘 =  
𝜀

𝜇
 

 

 

(35) 

𝜒 = 𝜔 𝜇𝜀 
 

(36) 

𝑟 =  𝑥2 + 𝑦2 
 

(37) 

𝜑 = arctg 𝑦/𝑥  
 

(38) 

𝐴,𝛼,𝜔 = const  (39) 

 

Here, as well as in the previous case, the electric and 

magnetic strengths are shifted in phase by a quarter of the 

period, and the electromagnetic energy flux on a cylinder 

of a given radius retains a certain value throughout the 

entire z-axis, despite the periodic change in these 

strengths. 

 

On the vector potential 

Consider the vector potential A in electrodynamics, which 

satisfies the following equation: 

 

rot 𝐀 = 𝜇Н  (40) 

 

Consider again the solution of Maxwell's equations for a 

vacuum in the general case but in the cylindrical 

coordinate system {r, φ, z}, keeping the notation adopted 

in the previous section. In this case, the solution will take 

the form: 

 

𝐻𝑟 = ℎ𝑟 𝑟 co  (41) 

𝐻𝜑 = ℎ𝜑(𝑟)si 
 

(42) 

𝐻𝑧 = ℎ𝑧(𝑟)si 
 

(43) 

𝐸𝑟 = 𝑒𝑟 𝑟 si  (44) 

𝐸𝜑 = 𝑒𝜑(𝑟)co 
 

(45) 

𝐸𝑧 = 𝑒𝑧(𝑟)co  (46) 

 

where 

 

co = cos(𝛼𝜑 + 𝜒𝑧 +𝜔𝑡)  
si = sin(𝛼𝜑 + 𝜒𝑧 + 𝜔𝑡)  

 

In this case, the vector potential components will take the 

following form: 

 

𝐴𝑟 = 𝑎𝑟 𝑟 co  (47) 

𝐴𝜑 = 𝑎𝜑(𝑟)si 
 

(48) 

𝐴𝑧 = 𝑎𝑧(𝑟)si  (49) 

 

Let us write down further the divergence equation for the 

vector H: 

 
𝐻𝑟

𝑟
+
𝜕𝐻𝑟

𝜕𝑟
+

1

𝑟
⋅
𝜕𝐻𝜑

𝜕𝜑
+
𝜕𝐻𝑧

𝜕𝑧
= 0 

 

 

(50) 

 

After substituting equations (41)-(43) into this equation 

and reducing by the coefficients co and si, we find: 

 
1

𝑟
ℎ𝑟 + ℎ 𝑟 +

𝛼

𝑟
⋅ ℎ𝜑 + 𝜒ℎ𝑧 = 0 

 

 

(51) 

 

In equation (51) and the corresponding equations written 

below, dots denote derivatives with respect to r. Equation 

(40) will take the following form:  

 
1

𝑟

∂𝐴𝑧
∂𝜑

−
∂𝐴𝜑

∂𝑧
= 𝜇𝐻𝑟  

 

 

(52) 

∂𝐴𝑟
∂𝑧

−
∂𝐴𝑧
∂𝑟

= 𝜇𝐻𝜑  
 

 

(53) 

𝐴𝜑

𝑟
+
∂𝐴𝜑

∂𝑟
−

1

𝑟

∂𝐴𝑟
∂𝜑

= 𝜇𝐻𝑧 
 

 

(54) 

 

Substituting equations (41)-(43) and (47)-(49) into 

equations (52)-(54) and reducing by the coefficients co 

and si, we find: 
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1

𝑟
𝑎𝑧 𝑟 𝛼 − 𝑎𝜑(𝑟)𝜒− 𝜇ℎ𝑟(𝑟) = 0 

 

 

(55) 

−𝑎𝑟 𝑟 𝜒 − 𝑎 𝑧 𝑟 − 𝜇ℎ𝜑(𝑟) = 0 
 

(56) 

𝑎𝜑 (𝑟)

𝑟
+ 𝑎 𝜑  𝑟 +

𝑎𝑟 𝑟 

𝑟
𝛼 − 𝜇ℎ𝑧(𝑟) = 0 

 

 

(57) 

 

From here, first of all, it follows that in the definition of 

the vector potential according to equations (47)-(49), 

another distribution of the functions co and si is not 

allowed, since otherwise, the terms of each equation from 

equations (55)-(57) will contain various functions co and 

si that cannot be reduced. 

 

The set of equations (55)-(57) determines the coefficients 

a depending on the known coefficients h. From (15) we 

find: 

 

𝑎𝑟 = −
1

𝜒
 𝑎 𝑧 + 𝜇ℎ𝜑  

 

(58) 

 

Combining equations (57) and (58), we find: 

 
1

𝑟
𝑎𝜑 + 𝑎 𝜑 −

𝛼

𝑟𝜒
𝑎 𝑧 −

𝛼

𝑟𝜒
𝜇ℎ𝜑 − 𝜇ℎ𝑧 = 0 

 

 

(59) 

 

From (55) we find: 

 

𝑎𝑧 =
𝑟

𝛼
 𝑎𝜑𝜒+ 𝜇ℎ𝑟  

 

 

(60) 

𝑎 𝑧 =
1

𝛼
 𝑎𝜑𝜒− 𝜇ℎ𝑟 +

𝑟

𝛼
𝑎 𝜑𝜒 

 

 

(61) 

 

From equations (59) and (60) we can find that  

 
1

𝑟
𝑎𝜑 + 𝑎 𝜑 − 𝜇 

𝛼

𝑟𝜒
ℎ𝜑 + ℎ𝑧  

 

−
𝛼

𝑟𝜒
 

1

𝛼
 𝑎𝜑𝜒− 𝜇ℎ𝑟 +

𝑟

𝛼
𝑎 𝜑𝜒 = 0 

 

 

 

or 

 
1

𝑟𝜒
ℎ𝑟 −

𝛼

𝑟𝜒
ℎ𝜑 − ℎ𝑧 = 0 

 

 

 

 

This condition must be met in order for the set of 

equations (55) and (56) to have a solution. But it 

contradicts the condition (51). Therefore, the set of 

equations (55) and (56) is incompatible with the given 

solution of the set of Maxwell's equations. 

 

A similar conclusion can be drawn for other solutions of 

the set of Maxwell equations for applications in technical 

devices. Thus, in the general case, the definition of a 

vector potential contradicts Maxwell's equations. Note 

that in the absence of longitudinal strengths, the vector 

potential exists. When solving in the form of a wave 

equation, the vector potential exists but the solution itself 

does not exist. 

 

So, in the general case, the vector potential in 

electrodynamics does not exist. This means that thousands 

of books and articles that begin with a reference to vector 

potential are wrong. But on the other hand, the condition 

of gauge invariance disappears from electrodynamics, 

which can be satisfied in many ways, and introduces 

arbitrariness into physics, which contradicts the very spirit 

of classical physics. 

 

Solution of Maxwell's equations for a wire with 

conduction current 

Here we will consider a rectilinear cylindrical wire of 

unlimited length, in which there is a specific electrical 

conductivity σ. In this case, not only displacement 

currents ε∂E/∂t but also conduction currents J are present 

in the wire, and Maxwell's equations take the form of 

equations (1)-(4). 

 

The conduction current is proportional to the electrical 

intensity, but in the conductor their phases do not 

coincide. This means that there is no single solution of 

Maxwell's equations in which the conduction current is 

also present. Therefore, we will look for a solution as the 

sum of two monochromatic solutions with the same 

frequencies. But the main rationale for this approach is 

electrical engineering. 

 

Here we consider only the case when there is a specific 

electrical conductivity σ but ε = 0. Then equations (1)-(4) 

take the following form: 

 

rot 𝐄 + 𝜇
𝜕𝐇

𝜕𝑡
= 0 

 

 

rot 𝐇 = 𝐉   

div 𝐄 = 0   

div 𝐇 = 0   

 

The solution of this set of equations has the following 

form (Khmelnik, 2021a): 

 

𝐸𝑥 = 𝑒𝑟si ∙ cos 𝜑 + 𝑒𝜑co ∙ sin 𝜑  
 

(62) 

𝐸𝑦 = 𝑒𝑟si ∙ sin 𝜑 + 𝑒𝜑co ∙ cos 𝜑  
 

(63) 

𝐸𝑧 = 𝑒𝑧co  (64) 

𝐻𝑥 = ℎ𝑟co ∙ cos 𝜑 + ℎ𝜑si ∙ sin 𝜑  
 

(65) 

𝐻𝑦 = ℎ𝑟co ∙ sin 𝜑 + ℎ𝜑si ∙ cos 𝜑  
 

(66) 

𝐻𝑧 = ℎ𝑧(𝑟)si  (67) 

𝐽𝑥 = 𝑗𝑟co ∙ cos 𝜑 + ℎ𝜑si ∙ sin 𝜑  
 

(68) 

𝐽𝑦 = 𝑗𝑟co ∙ sin 𝜑 + ℎ𝜑si ∙ cos 𝜑  
 

(69) 
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𝐽𝑧 = 𝑗𝑧(𝑟)si  (70) 

 

where 

 

co = cos(𝛼𝜑 + 𝜒𝑧 +𝜔𝑡)  (71) 

si = sin(𝛼𝜑 + 𝜒𝑧 +𝜔𝑡)  (72) 

𝑒𝑧 = А𝑟−𝛼   (73) 

𝑒𝜑 = 𝑒𝑟 = 𝐵𝑟1−𝛼  
 

(74) 

𝐵 =
𝜒А

2 1 −𝛼 
 
 

 

(75) 

ℎ𝑟 = 𝑘𝑒𝑟  (76) 

ℎ𝜑 = −𝑘𝑒𝜑  
 

(77) 

ℎ𝑧 = −𝑘𝑒𝑧  (78) 

𝑗𝑟 = 𝜎𝑒𝑟   (79) 

𝑗𝜑 = 𝜎𝑒𝜑  
 

(80) 

𝑗𝑧 = 𝜎𝑒𝑧  (81) 

0 < 𝛼 < 1  (82) 

𝑘 =  
𝜎

𝜇𝜔
 

 

 

(83) 

𝜒 =  𝜎𝜇𝜔  
(84) 

𝑟 =  𝑥2 + 𝑦2 
 

(85) 

𝜑 = arctg 𝑦/𝑥  
 

(86) 

 

with A, α, ω being constants.   

 

In this solution, the magnetic field strengths and electrical 

field strengths are antiphase, the conduction currents are 

in phase with the magnetic field strengths. 

 

Let us also consider the energy flows in the wire, using 

the cylindrical coordinates {r, φ, z}. In this case, the 

strengths are respectively determined as follows: 

 

𝐻𝑟 = ℎ𝑟 𝑟 si  (87) 

𝐻𝜑 = ℎ𝜑 𝑟 co 
 

(88) 

𝐻𝑧 = ℎ𝑧 𝑟 co 
 

(89) 

𝐸𝑟 = 𝑒𝑟 𝑟 co 
 

(90) 

𝐸𝜑 = 𝑒𝜑 𝑟 si 
 

(91) 

𝐸𝑧 = 𝑒𝑧 𝑟 si 
 

(92) 

 

The electromagnetic energy flux density, namely the 

Poynting vector is determined by the following formula: 

 

𝐒 = 𝐄 ×𝐇  (93) 

 

In the cylindrical coordinates, it has three components {Sr, 

Sφ, Sz} directed along the radius, along the circumference, 

along the z-axis, respectively. They are determined by the 

following formula: 

 

𝐒 =  

𝑆𝑟
𝑆𝜑
𝑆𝑧

 =  𝐄 × 𝐇 =  

𝐸𝜑𝐻𝑧 − 𝐸𝑧𝐻𝜑

𝐸𝑧𝐻𝑟 − 𝐸𝑟𝐻𝑧

𝐸𝑟𝐻𝜑 − 𝐸𝜑𝐻𝑟

  

 

 

(94) 

 

or, taking into account the previous formulas, 

 

𝑆𝑟 = 𝜂 𝑒𝜑ℎ𝑧 − 𝑒𝑧ℎ𝜑 co ∙ si 
 

(95) 

𝑆𝜑 = 𝜂 𝑒𝑧ℎ𝑟co2 − 𝑒𝑟ℎ𝑧si2  
 

(96) 

𝑆𝑧 = 𝜂 𝑒𝑟ℎ𝜑si2 − 𝑒𝜑ℎ𝑟co2  
 

(97) 

 

Substituting here formulas (76)-(78), we get: 

 

𝑆𝑟 = 𝜂 −𝑘𝑒𝜑𝑒𝑧 + 𝑘𝑒𝑧𝑒𝜑 co ∙ si = 0 
 

(98) 

𝑆𝜑 = 𝜂 𝑘𝑒𝑧𝑒𝑟co2 + 𝑘𝑒𝑟𝑒𝑧si2 = 𝜂𝑘𝑒𝑟𝑒𝑧  (99) 

𝑆𝑧 = 𝜂 −𝑘𝑒𝑟𝑒𝜑si2 −𝑘𝑒𝜑𝑒𝑟co2 = −𝜂𝑘𝑒𝑟𝑒𝜑  
 

(100) 

 

It follows from formula (98) that there is no radial energy 

flow directed perpendicular to the wire surface, but, as 

follows from (99) and (100), there are energy flows 

directed along the wire and around the wire 

circumference. Both of these flows have a value that is 

constant in time. They are streams of active energy. The 

idiotic idea (according to Feynman et al. (1964)) that the 

energy flow comes into the wire from the outside and 

only to turn into the energy of the thermal motion of 

electrons is not confirmed. 

 

Variational principle in electrodynamics 

The variational principle of least action exists in all 

branches of physics. It is known that Maxwell's equations 

are also derived from the principle of least action. For 

this, the concept of the existence of a vector potential is 

used, then a certain functional is formulated with respect 

to such a potential and a scalar electric potential called the 

action. By varying the action with respect to the vector 

magnetic potential and the scalar potential, the condition 

for the minimum of this functional is found. However, it 

was shown above that the vector potential is not 

compatible with Maxwell's equations. Therefore, the 

conclusion under consideration cannot be considered 

conclusive. We also note that the resulting functional does 

not include thermal energy losses arising from conduction 

currents. The matter is further complicated by the fact that 

in the symmetric form of Maxwell's equations (in the 

presence of both magnetic and electric charges) the 

electromagnetic field cannot be described using a vector 

potential that is continuous throughout space. Therefore, 

Maxwell's symmetric equations are not derived from the 

variational principle of least action, even if we assume the 

existence of a vector potential. 

 

Thus, to derive the Maxwell equations from the 

variational principle, another functional must be found 

that does not involve the use of a vector potential and 
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allows one to take into account the energy dissipation. 

The author proposed the full action extremum principle, 

which also takes into account heat losses. This principle is 

described in (Khmelnik, 2014). There is also a functional 

for which the complete set of symmetric Maxwell 

equations is a necessary and sufficient condition for the 

existence of a unique optimum. 

 

In addition, the proposed functional can be used to resolve 

Maxwell's equations. The fact is that the functional used 

in this or that principle is an integral. It is possible to 

construct an algorithm for moving along the surface 

described by the integrand in the direction of the optimal 

line. When the optimum is reached, the equations are thus 

resolved, which are the conditions for the existence of this 

optimum. 

 

Before formulating the functional as a whole, consider the 

functional of the following form: 

 

Φо =      𝑓(𝑥, 𝑦, 𝑧)
𝑥

𝑑𝑥 𝑑𝑦
𝑦

 
𝑧

𝑑𝑧 
 

 

(101) 

 

where  

 

𝑓 𝑥, 𝑦, 𝑧 = 𝐻𝑥

𝜕𝐸𝑧
𝜕𝑦

−𝐻𝑥

𝜕𝐸𝑦
𝜕𝑧

+𝐻𝑦

𝜕𝐸𝑥
𝜕𝑧

 
 

−𝐻𝑦

𝜕𝐸𝑧
𝜕𝑥

+𝐻𝑧

𝜕𝐸𝑦
𝜕𝑥

+ 𝐻𝑧

𝜕𝐸𝑥
𝜕𝑦

 
 

−𝐸𝑥
𝜕𝐻𝑧

𝜕𝑦
+ 𝐸𝑥

𝜕𝐻𝑦

𝜕𝑧
− 𝐸𝑦

𝜕𝐻𝑥

𝜕𝑧
 
 

+𝐸𝑦
𝜕𝐻𝑧

𝜕𝑥
− 𝐸𝑧

𝜕𝐻𝑦

𝜕𝑥
+ 𝐸𝑧

𝜕𝐻𝑥

𝜕𝑦
 
 

 

 

 

 

(102) 

 

In (Khmelnik, 2014), it is proved that the extremals of this 

functional are equations of the following form: 

 

rot 𝐇 = 0  (103) 

rot 𝐄 = 0  (104) 

 

For the convenience of further presentation, the integrand 

in (101) will be denoted as ℑ(H, E). In this case, 

functional (101) takes the following form: 

 

Φо =       𝕴 𝐇,𝐄  
𝑥

𝑑𝑥 𝑑𝑦
𝑦

 
𝑧

𝑑𝑧 
 

 

(105) 

 

It can be seen that 

 

𝕴 𝐇,𝐄 = 𝐇 ⋅ rot(𝐄)− 𝐄 ⋅ rot(𝐇)  (106) 

 

Consider now the following functional: 

 

Φ =         𝚽𝟏𝑑𝑥 

𝑥

 𝑑𝑦

𝑦

 𝑑𝑧

𝑧

 𝑑𝑡

𝑇

𝑡=0

 

 

 

(107) 

 

where 

 

𝚽𝟏 =
1

2
 𝕴 𝐇′ ,𝐄′ − 𝕴 𝐇″ ,𝐄″    

 

+
𝜇

2
 𝐇′

𝑑𝐇″

𝑑𝑡
− 𝐇″

𝑑𝐇′

𝑑𝑡
 +

𝜀

2
 −𝐄′

𝑑𝐄″

𝑑𝑡
+ 𝐄″

𝑑𝐄′

𝑑𝑡
  

 

+  −𝐊′  div(𝐄′)−
𝜌

2𝜀
 +𝐊″  div(𝐄″ )−

𝜌

2𝜀
   

 

+  𝐋′  div(𝐇′) −
𝜎

2𝜇
 − 𝐋″  div(𝐇″ )−

𝜎

2𝜇
   

 

 

 

 

 

(108) 

 

In this functional, all variable functions are represented as 

sums: H = Hʹ + Hʺ, etc. The necessary conditions for the 

extremum of such a functional as a functional of functions 

of several independent variables are the Ostrogradsky 

equations (Elsgoltz, 2000). Applying them and 

differentiating with respect to the variables Eʹ, Eʺ, Hʹ, 

Hʺ, Kʹ, Kʺ, Lʹ, Lʺ, we find that  

 

rot(𝐇′)− 𝜀
𝑑𝐄″

𝑑𝑡
− grad 𝐊′ = 0 

 

 

(109) 

−rot(𝐇″ ) + 𝜀
𝑑𝐄′

𝑑𝑡
+ grad 𝐊″  = 0 

 

 

(110) 

rot(𝐄′) + 𝜇
𝑑𝐇″

𝑑𝑡
+ grad 𝐋′ = 0 

 

 

(111) 

rot(𝐄″ ) + 𝜇
𝑑𝐇′

𝑑𝑡
+ grad 𝐋″  = 0 

 

 

(112) 

div(𝐄′) −
𝜌

2𝜀
= 0,  div(𝐇′)−

𝜎

2𝜇
= 0 

 

 

(113) 

div(𝐄″ )−
𝜌

2𝜀
= 0,  div(𝐇″ )−

𝜎

2𝜇
= 0 

 

 

(114) 

 

Due to the symmetry of equations (109)-(114) we have: 

 

𝐄′ = 𝐄″ ,𝐇′ = 𝐇″ ,𝐊′ = 𝐊″ ,𝐋′ = 𝐋″   (115) 

 

Denote that 

 

𝐄 = 𝐄′ + 𝐄″ , 𝐇 = 𝐇′ +𝐇″ ,  
 𝐊 = 𝐊′ + 𝐊″ , 𝐋 = 𝐋′ + 𝐋″   

 

(116) 

 

Subtracting equation (110) from equation (109), we 

obtain that  

 

rot(𝐇)− 𝜀
𝑑𝐄

𝑑𝑡
− grad 𝐊 = 0 

 

 

(117) 

 

Similarly, subtracting equation (112) from (111), we also 

obtain that  
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rot(𝐄) + 𝜇
𝑑𝐇

𝑑𝑡
+ grad 𝐋 = 0 

 

 

(118) 

 

Similarly, with equations (113) and (114), we can obtain 

the following formulae: 

 

div(𝐄)− 𝜌 𝜀 = 0  (119) 

div(𝐇)−𝜎 𝜇 = 0  (120) 

 

The resulting equations are necessary conditions for the 

existence of an extremum of functional (101) with respect 

to pairs of functions of the form Eʹ, Eʺ. These extrema 

are opposite (minimum-maximum or maximum-

minimum) because the corresponding equations differ in 

the signs of the terms. Consequently, these equations are 

necessary conditions for the existence of a saddle line 

with respect to functions of the forms Eʹ and Eʺ in 

functional (101). 

 

It can be seen that equations (116)-(120) are Maxwell's 

symmetric equations, where 

 

E is the electric field strength, 

H is the magnetic field strength, 

μ is the magnetic permeability, 

ε is the electric permittivity, 

ρ is the electric charge density, 

σ is the density of the hypothetical magnetic charge, 

grad(K) is the electric current density, 

grad(L) is the hypothetical magnetic current density. 

 

Denote that  

 

𝐉 = grad 𝐊   (121) 

𝐌 = grad 𝐋   (122) 

 

Let us consider the physical meaning of the quantity K. 

Denote that 

 

ϕ is the electric scalar potential, 

ϑ is the electrical conductivity, 

jx is the projection of the electric current density vector J 

onto the х-axis. 

 

Then we get jx = – ϑdϕ/dx. But from (121) it follows that 

jx = dK/dx. Consequently, 

 
𝑑𝐊

𝑑𝑥
= −𝜗

𝑑𝛟

𝑑𝑥
 
 

 

(123) 

 

i.е. 

 

𝐊 = −𝜗𝛟  (124) 

 

Likewise, 

 
𝑑𝐋

𝑑𝑥
= −𝜍

𝑑𝛗

𝑑𝑥
 
 

 

(125) 

𝐋 = −𝜍𝛗  (126) 

 

where 

 

φ is the magnetic scalar potential, 

ς is the magnetic conductivity. 

 

So, combining equations (117), (118), (121), (122), we 

obtain the final form of Maxwell's equations: 

 

rot(𝐇)− 𝜀
𝑑𝐄

𝑑𝑡
− J = 0 

 

 

(127) 

rot(𝐄) + 𝜇
𝑑𝐇

𝑑𝑡
+ M = 0 

 

 

(128) 

div(𝐄)− 𝜌 𝜀 = 0  (129) 

div(𝐇)−𝜎 𝜇 = 0  (130) 

 

Thus, a functional is obtained for which the Maxwell 

equations are necessary conditions for the existence of a 

saddle line. It is also proved in (Khmelnik, 2014) that 

these equations are also sufficient conditions for the 

existence of a saddle line. This functional takes into 

account heat losses and the existence of magnetic charges 

and currents. 

 

The author calls the saddle line search principle used in 

the variational extremum principle and shows that it is 

applicable in various areas of physics. It can be assumed 

that the variational principle is not just a beautiful record 

of patterns found in a different way (like a rotor that 

combines three linear equations), but the original 

information from which these patterns follow. Then it is 

possible to look for new patterns based on the variational 

principle. This is the method we will use next. 

 

Direct current and Lorentz force 

From Maxwell's equations of general form (1)-(4) it 

follows that for a static field there should be the following 

set of equations: 

 

rot 𝐄 = 0 
 

(131) 

rot 𝐇 = 𝐉 
 

(132) 

div 𝐄 = 0  (133) 

div 𝐇 = 0  (134) 

 

These four equations can be obtained by discarding time 

derivatives. This set of equations follows from (1)-(4) 

simply because the set of equations (1)-(4) is, in turn, a 

consequence of the variational principle. 

 

In the DC wire we have: 
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𝐄 = 𝜌𝐉  (135) 

 

where ρ is the resistivity of the wire. Therefore, there is a 

field in the DC wire described by a set of equations of the 

following form: 

 

rot 𝐉 = 0  (136) 

rot 𝐇 = 𝐉  (137) 

div 𝐉 = 0  (138) 

div 𝐇 = 0  (139) 

 

Usually, the set of Maxwell equations and the Lorentz 

force formula are considered as the foundations of 

electrodynamics, as two independent components of these 

foundations. It must be said that Maxwell actually 

included the Lorentz force in one of his equations in the 

following form (Maxwell, 1873a, 1873b): 

 

J = 𝜎  −∇𝛗−
𝜕𝐀

𝜕𝑡
+ 𝐯 × 𝐁  

 

 

(140) 

 

where J, v, B, φ, A are the current, speed of movement of 

an electric charge, magnetic induction, electric and 

magnetic potentials, respectively. Further, Maxwell's 

equations were transformed by the work of Heaviside, 

Hertz and Gibbs into a modern form, where there is 

neither the speed of the electric charge nor the potentials. 

In this case, the formula for the Lorentz force is: 

 

F = 𝑞 𝐄+ 𝐯 × 𝐁   (141) 

 

or, taking into account equation (135), 

 

F = 𝜌𝑞𝐉+ 𝐉 × 𝐁  (142) 

 

where q is an electric charge, complements the set of 

Maxwell's equations. However, these forces act inside the 

physical system, which is described by the set of Maxwell 

equations with an additional equation (142). In a closed 

physical system, this entire group of formulas must be 

consistent. 

 

A wire with a direct current (DC) is a testing ground for 

this statement. Since the set of Maxwell's equations is 

strictly defined, formula (142) must follow from this 

equations’ set. Thus, Lorentz force formula (142) should 

follow from the solution of Maxwell's equations (136) and 

(139) for a DC wire. 

 

This solution was found in the cylindrical coordinate 

system {r, φ, z} and has the following form (Khmelnik, 

2021a): 

 

𝐽𝜑 = 𝑗𝜑co+𝐽𝜑o 
 

(143) 

𝐽𝑧 = 𝑗𝑧co+𝐽𝑧o   (144) 

𝐻𝑟 = ℎ𝑟co+𝐻𝑟o   (145) 

𝐻𝜑 = ℎ𝜑si+𝐻𝜑o 
 

(146) 

𝐻𝑧 = ℎ𝑧si+𝐻𝑧o   (147) 

co = cos(𝛼𝜑 + 𝜒𝑧) 
 

(148) 

si = sin(𝛼𝜑 + 𝜒𝑧)  (149) 

 

where α and χ are some constants, jz(r), hz(r), Jzo(r), 

Hzo(r), etc. are some functions of the coordinate r. 

 

With these known functions (143)-(147), energy flows in 

a DC wire can be determined. The density of the 

electromagnetic energy flux, namely the Poynting vector 

is determined, as it is known, by the following formula: 

 

𝐒 = 𝐄 ×𝐇  (150) 

 

The currents correspond to the electric field strengths of 

the same designation in equations (5). Combining 

formulae (150) and (135), we get: 

 

𝐒 = 𝜌𝐉 × 𝐇 =
𝜌

𝜇
𝐉 × 𝐁 

 

 

(151) 

 

The Lorentz magnetic force acting on a unit charge of a 

conductor in a unit volume is the volumetric density of 

the Lorentz magnetic force equal to 

 

𝐅𝐦 = 𝐉 × 𝐁  (152) 

 

From equations (151) and (152) we find: 

 

𝐅𝐦 = 𝜇 𝐒 𝜌   (153) 

 

Therefore, in a DC wire, the density of the Lorentz 

magnetic force is proportional to the Poynting vector. 

Lorentz electric force follows from formula (135). So, we 

have  

 

𝐅𝐞 = 𝜌𝑞𝐉  (154) 

 

Consequently, the solution of the set of Maxwell's 

equations allows one to find the energy flux density from 

equation (150) and then find the volume density of the 

Lorentz force from equation (142). Thus, the formula for 

the Lorentz force is a consequence of the set of Maxwell's 

equations, and not an addition to this set. 

 

Structure of an electromagnetic wave 

So, the wave equation of electrodynamics, as the only and 

really existing solution of Maxwell's equations, is a myth 

far from reality. Nature is much more diverse. For 

instance, here there is the photograph of a wire wetted 

with a magnetic fluid, where the reader can see the spiral 

lines formed by the fluid that is shown in Figure 3. 
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Spirals are present in all solutions of Maxwell's equations 

discussed above. For instance, Figure 4 shows some 

spirals corresponding to the following functions: 

 

𝐄φ      , 𝐄r
     , 𝐄rφ

       = 𝐄φ      + 𝐄r
      

 
 

However, there are phenomena more mysterious. For 

instance, here there are two photographs (Figures 5 and 6) 

of the square waves in which large ships die. 

Solutions of Maxwell's equations can also have a similar 

form. The strengths of the electric and magnetic fields 

found as a solution to Maxwell's equations can have the 

following form (Khmelnik, 2021b): 

 

𝐸𝑥 𝑥,𝑦, 𝑧, 𝑡 = 𝑒𝑥cos 𝛼𝑥 sin 𝛼𝑦 sin 𝛼𝑧 sin 𝜔𝑡   (155) 

𝐸𝑦 𝑥,𝑦, 𝑧, 𝑡 = 𝑒𝑦sin 𝛼𝑥 cos 𝛼𝑦 sin 𝛼𝑧 sin 𝜔𝑡  
 

(156) 

𝐸𝑧 𝑥,𝑦, 𝑧, 𝑡 = 𝑒𝑧sin 𝛼𝑥 sin 𝛼𝑦 cos 𝛼𝑧 sin 𝜔𝑡  
 

(157) 

 

Fig. 3. The photograph of a wire wetted with a magnetic fluid. 

 

 

Fig. 4. The spirals. 
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𝐻𝑥 𝑥, 𝑦, 𝑧, 𝑡 = ℎ𝑥sin 𝛼𝑥 cos 𝛼𝑦 cos 𝛼𝑧 cos 𝜔𝑡   (158) 

𝐻𝑦 𝑥, 𝑦, 𝑧, 𝑡 = ℎ𝑦cos 𝛼𝑥 sin 𝛼𝑦 cos 𝛼𝑧 cos 𝜔𝑡  
 

(159) 

𝐻𝑧 𝑥, 𝑦, 𝑧, 𝑡 = ℎ𝑧cos 𝛼𝑥 cos 𝛼𝑦 sin 𝛼𝑧 cos 𝜔𝑡   (160) 

 

where ex, ey, ez, hx, hy, hz are constant function amplitudes; 

α, ω are constants. The amplitudes in it are related by 

equations of the following form: 

 

ℎ𝑧 = 0  (161) 

ℎ𝑦 = −ℎ𝑥   (162) 

ℎ𝑥 = −
𝜀𝜔

𝛼
𝑒𝑥 

 

 

(163) 

𝑒𝑦 = 𝑒𝑥  
 

(164) 

𝑒𝑧 = −2𝑒𝑥   (165) 

The amplitudes can be determined by some given value of 

 

Fig. 5. The structure of the ocean square waves. 

 

 

Fig. 6. The other picture of the ocean square waves.  
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the parameter ex. The circular frequency is  

 

𝜔 = 𝑐𝛼 4.5  (166) 

 

These equations describe a volumetric standing wave that 

exists in the volume of a cube whose edge has the 

following length: 

 

𝐿 = 𝜋/𝛼  (167) 

 

The electromagnetic energy density of this wave is 

defined as 

 

𝑊 = 𝜀𝐸2 + 𝜇𝐻2  (168) 

 

and this wave satisfies the following condition:  

 

𝑈 = 𝜀 𝐸2 = 𝜇 𝐻2   (169) 

 

Total electromagnetic wave energy in the cube is 

 

𝑊o = 𝑈 ∙ 𝐿3  (170) 

 

This energy does NOT change with time. 

 

Epilogue 

“Have the reader ever heard that Maxwell's equations, the 

wave equation, the vector potential underlie quantum 

mechanics – a fundamental physical theory that ...” Quiet, 

guys, the author is not arguing with the reader. The fact 

that even the incorrect solution of Maxwell's equations 

came turned out to be necessary increases my admiration 

for these equations. The law of conservation of energy is 

not written for the reader. Otherwise, the reader would not 

have written so ornately: "The energy of a particle 

remains a quantity invariant with respect to the 

translation of time." Therefore, the reader can use what 

the reader has underlie. However, the author urges 

classical electrodynamics to be like all classical sciences 

and not to break down in front of young people. We'll 

have to see what she'll grow up to be when she's wiser. 

 

CONCLUSION 

 

This paper had the aim to stimulate further researches in 

this direction that can be followed young researchers. 

Some possible solutions of the Maxwell equations were 

demonstrated and visualized. The phenomenon of the 

ocean square waves was also touched and discussed. 
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