THE FINE STRUCTURE CONSTANT, MODIFIED UNCERTAINTY PRINCIPLE, AMAZING PHOTONS AND FREE SPACE POLARIZATION Page No: 5359-5366

Wenzhong David Zhang

Keywords: Dynamic elementary dipole, fine structure constant, the least action, uncertainty principle, spin energy, quantum entanglement, vacuum polarization

Abstract: A dynamic elementary dipole model, with a spinning twin elementary unit charge particles having opposite signs of the charges, is proposed to explain the internal structure and the mutually induced oscillating electric and magnetic fields of a propagating photon. The twin elementary unit charge particles under electric attraction force form a dynamic elementary dipole and achieve a relatively stable orbital motion with a constant drifting speed of its mass centre. From a combined mechanical and electromagnetic analysing, the widely accepted formula for the fine structure constant is derived. It is revealed that the fine structure constant is the ratio of the radius of the dynamic elementary dipole to the corresponding radius of its photon. The fine structure constant is also derived as the ratio of the spinning angular frequency inside the dynamic elementary dipole to the corresponding angular frequency of its photon. In the effect of the spin, the drift movement of the mass centre of the dynamic elementary dipole, accomplished in the joined action of the electric and the magnetic fields, is derived as the light speed in the free space. Base on the derivation of the least action of the spinning elementary unit charge particle, a modified uncertainty principle is proposed. The modified uncertainty principle permits dramatically increased levels of precision for scientific measurements and engineering design in comparison with the Heisenberg Uncertainty Principle. The spin energy of the elementary unit charge particle inside the dynamic elementary dipole is derived as just half of the energy of its photon. The quantum number of half for the spinning elementary unit charge particle is deduced. The free space is revealed as a dielectric medium full of dynamic elementary dipoles, having electric and magnetic polarizability naturally.



[View Complete Article]